-
Notifications
You must be signed in to change notification settings - Fork 126
[Model]fix_rwkv_cuda #894
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Open
AswarS
wants to merge
1
commit into
flagos-ai:main
Choose a base branch
from
AswarS:main
base: main
Could not load branches
Branch not found: {{ refName }}
Loading
Could not load tags
Nothing to show
Loading
Are you sure you want to change the base?
Some commits from the old base branch may be removed from the timeline,
and old review comments may become outdated.
+355
−22
Open
[Model]fix_rwkv_cuda #894
Changes from all commits
Commits
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,138 @@ | ||
| #include <cuda_bf16.h> | ||
| #include <assert.h> | ||
|
|
||
| using bf = __nv_bfloat16; | ||
| __device__ inline float to_float(const bf & u) { return __bfloat162float(u); } | ||
| __device__ inline bf to_bf(const float & u) { return __float2bfloat16_rn(u); } | ||
|
|
||
| typedef bf * __restrict__ F_; | ||
|
|
||
| __global__ void forward_kernel(int T, int H, F_ w_, F_ q_, F_ k_, F_ v_, F_ a_, F_ b_, bf* y_, float* s_, float* sa_) { | ||
| constexpr int C = _C_; | ||
| int bb = blockIdx.y, hh = blockIdx.x, i = threadIdx.x; | ||
|
|
||
| float state[C] = {0}; | ||
| __shared__ float q[C], k[C], w[C], a[C], b[C]; | ||
|
|
||
| for (int t = 0; t < T; t++) { | ||
| int ind = bb*T*H*C + t*H*C + hh * C + i; | ||
| __syncthreads(); | ||
| q[i] = to_float(q_[ind]); | ||
| w[i] = __expf(-__expf(to_float(w_[ind]))); | ||
| k[i] = to_float(k_[ind]); | ||
| a[i] = to_float(a_[ind]); | ||
| b[i] = to_float(b_[ind]); | ||
| __syncthreads(); | ||
|
|
||
| float sa = 0; | ||
| #pragma unroll | ||
| for (int j = 0; j < C; j++) { | ||
| sa += a[j] * state[j]; | ||
| } | ||
| sa_[ind] = sa; | ||
|
|
||
| float v = to_float(v_[ind]); | ||
| float y = 0; | ||
| #pragma unroll | ||
| for (int j = 0; j < C; j++) { | ||
| float& s = state[j]; | ||
| s = s * w[j] + sa * b[j] + k[j] * v; | ||
| y += s * q[j]; | ||
| } | ||
| y_[ind] = to_bf(y); | ||
|
|
||
| if ((t+1)%_CHUNK_LEN_ == 0) { | ||
| int base = (bb*H+hh)*(T/_CHUNK_LEN_)*C*C + (t/_CHUNK_LEN_)*C*C + i; | ||
| #pragma unroll | ||
| for (int j = 0; j < C; j++) { | ||
| s_[base + j*C] = state[j]; | ||
| } | ||
| } | ||
| } | ||
| } | ||
|
|
||
| __global__ void backward_kernel(int T, int H, F_ w_, F_ q_, F_ k_, F_ v_, F_ a_, F_ b_, F_ dy_, float * __restrict__ s_, float * __restrict__ sa_, bf* dw_, bf* dq_, bf* dk_, bf* dv_, bf* da_, bf* db_) { | ||
| constexpr int C = _C_; | ||
| int bb = blockIdx.y, hh = blockIdx.x, i = threadIdx.x; | ||
|
|
||
| float stateT[C] = {0}, dstate[C] = {0}, dstateT[C] = {0}; | ||
| __shared__ float w[C], q[C], k[C], v[C], a[C], b[C], dy[C], sa[C], dSb_shared[C]; | ||
| float qi, wi, ki, ai, bi, dyi; | ||
|
|
||
| for (int t = T-1; t >= 0; t--) { | ||
| int ind = bb*T*H*C + t*H*C + hh * C + i; | ||
| __syncthreads(); | ||
| q[i] = qi = to_float(q_[ind]); | ||
| float wi_fac = -__expf(to_float(w_[ind])); | ||
| w[i] = wi = __expf(wi_fac); | ||
| k[i] = ki = to_float(k_[ind]); | ||
| a[i] = ai = to_float(a_[ind]); | ||
| b[i] = bi = to_float(b_[ind]); | ||
| v[i] = to_float(v_[ind]); | ||
| dy[i] = dyi = to_float(dy_[ind]); | ||
| sa[i] = sa_[ind]; | ||
| __syncthreads(); | ||
|
|
||
| if ((t+1)%_CHUNK_LEN_ == 0) { | ||
| int base = (bb*H+hh)*(T/_CHUNK_LEN_)*C*C + (t/_CHUNK_LEN_)*C*C + i*C; | ||
| #pragma unroll | ||
| for (int j = 0; j < C; j++) { | ||
| stateT[j] = s_[base + j]; | ||
| } | ||
| } | ||
|
|
||
| float dq = 0; | ||
| #pragma unroll | ||
| for (int j = 0; j < C; j++) { | ||
| dq += stateT[j]*dy[j]; | ||
| } | ||
| dq_[ind] = to_bf(dq); | ||
|
|
||
| float iwi = 1.0f/wi; | ||
| #pragma unroll | ||
| for (int j = 0; j < C; j++) { | ||
| stateT[j] = (stateT[j] - ki*v[j] - bi*sa[j]) * iwi; | ||
| dstate[j] += dyi * q[j]; | ||
| dstateT[j] += qi * dy[j]; | ||
| } | ||
|
|
||
| float dw = 0, dk = 0, dv = 0, db = 0, dSb = 0; | ||
| #pragma unroll | ||
| for (int j = 0; j < C; j++) { | ||
| dw += dstateT[j]*stateT[j]; | ||
| dk += dstateT[j]*v[j]; | ||
| dv += dstate[j]*k[j]; | ||
| dSb += dstate[j]*b[j]; | ||
| db += dstateT[j]*sa[j]; | ||
| } | ||
| dw_[ind] = to_bf(dw * wi * wi_fac); | ||
| dk_[ind] = to_bf(dk); | ||
| dv_[ind] = to_bf(dv); | ||
| db_[ind] = to_bf(db); | ||
|
|
||
| __syncthreads(); | ||
| dSb_shared[i] = dSb; | ||
| __syncthreads(); | ||
|
|
||
| float da = 0; | ||
| #pragma unroll | ||
| for (int j = 0; j < C; j++) { | ||
| da += stateT[j]*dSb_shared[j]; | ||
| } | ||
| da_[ind] = to_bf(da); | ||
|
|
||
| #pragma unroll | ||
| for (int j = 0; j < C; j++) { | ||
| dstate[j] = dstate[j]*w[j] + dSb * a[j]; | ||
| dstateT[j] = dstateT[j]*wi + ai * dSb_shared[j]; | ||
| } | ||
| } | ||
| } | ||
|
|
||
| void cuda_forward(int B, int T, int H, bf*w, bf*q, bf*k, bf*v, bf*z, bf*a, bf*y, float*s, float*sa) { | ||
| forward_kernel<<<dim3(H,B), dim3(_C_)>>>(T,H,w,q,k,v,z,a,y,s,sa); | ||
| } | ||
| void cuda_backward(int B, int T, int H, bf*w, bf*q, bf*k, bf*v, bf*z, bf*a, bf*dy, float*s, float*sa, bf*dw, bf*dq, bf*dk, bf*dv, bf*dz, bf*da) { | ||
| assert(T%_CHUNK_LEN_ == 0); | ||
| backward_kernel<<<dim3(H,B), dim3(_C_)>>>(T,H,w,q,k,v,z,a,dy,s,sa,dw,dq,dk,dv,dz,da); | ||
| } | ||
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,139 @@ | ||
| #include "hip/hip_runtime.h" | ||
| #include <hip/hip_bf16.h> | ||
| #include <assert.h> | ||
|
|
||
| using bf = __hip_bfloat16; | ||
| __device__ inline float to_float(const bf & u) { return __bfloat162float(u); } | ||
| __device__ inline bf to_bf(const float & u) { return __float2bfloat16(u); } | ||
|
|
||
| typedef bf * __restrict__ F_; | ||
|
|
||
| __global__ void forward_kernel(int T, int H, F_ w_, F_ q_, F_ k_, F_ v_, F_ a_, F_ b_, bf* y_, float* s_, float* sa_) { | ||
| constexpr int C = _C_; | ||
| int bb = blockIdx.y, hh = blockIdx.x, i = threadIdx.x; | ||
|
|
||
| float state[C] = {0}; | ||
| __shared__ float q[C], k[C], w[C], a[C], b[C]; | ||
|
|
||
| for (int t = 0; t < T; t++) { | ||
| int ind = bb*T*H*C + t*H*C + hh * C + i; | ||
| __syncthreads(); | ||
| q[i] = to_float(q_[ind]); | ||
| w[i] = __expf(-__expf(to_float(w_[ind]))); | ||
| k[i] = to_float(k_[ind]); | ||
| a[i] = to_float(a_[ind]); | ||
| b[i] = to_float(b_[ind]); | ||
| __syncthreads(); | ||
|
|
||
| float sa = 0; | ||
| #pragma unroll | ||
| for (int j = 0; j < C; j++) { | ||
| sa += a[j] * state[j]; | ||
| } | ||
| sa_[ind] = sa; | ||
|
|
||
| float v = to_float(v_[ind]); | ||
| float y = 0; | ||
| #pragma unroll | ||
| for (int j = 0; j < C; j++) { | ||
| float& s = state[j]; | ||
| s = s * w[j] + sa * b[j] + k[j] * v; | ||
| y += s * q[j]; | ||
| } | ||
| y_[ind] = to_bf(y); | ||
|
|
||
| if ((t+1)%_CHUNK_LEN_ == 0) { | ||
| int base = (bb*H+hh)*(T/_CHUNK_LEN_)*C*C + (t/_CHUNK_LEN_)*C*C + i; | ||
| #pragma unroll | ||
| for (int j = 0; j < C; j++) { | ||
| s_[base + j*C] = state[j]; | ||
| } | ||
| } | ||
| } | ||
| } | ||
|
|
||
| __global__ void backward_kernel(int T, int H, F_ w_, F_ q_, F_ k_, F_ v_, F_ a_, F_ b_, F_ dy_, float * __restrict__ s_, float * __restrict__ sa_, bf* dw_, bf* dq_, bf* dk_, bf* dv_, bf* da_, bf* db_) { | ||
| constexpr int C = _C_; | ||
| int bb = blockIdx.y, hh = blockIdx.x, i = threadIdx.x; | ||
|
|
||
| float stateT[C] = {0}, dstate[C] = {0}, dstateT[C] = {0}; | ||
| __shared__ float w[C], q[C], k[C], v[C], a[C], b[C], dy[C], sa[C], dSb_shared[C]; | ||
| float qi, wi, ki, ai, bi, dyi; | ||
|
|
||
| for (int t = T-1; t >= 0; t--) { | ||
| int ind = bb*T*H*C + t*H*C + hh * C + i; | ||
| __syncthreads(); | ||
| q[i] = qi = to_float(q_[ind]); | ||
| float wi_fac = -__expf(to_float(w_[ind])); | ||
| w[i] = wi = __expf(wi_fac); | ||
| k[i] = ki = to_float(k_[ind]); | ||
| a[i] = ai = to_float(a_[ind]); | ||
| b[i] = bi = to_float(b_[ind]); | ||
| v[i] = to_float(v_[ind]); | ||
| dy[i] = dyi = to_float(dy_[ind]); | ||
| sa[i] = sa_[ind]; | ||
| __syncthreads(); | ||
|
|
||
| if ((t+1)%_CHUNK_LEN_ == 0) { | ||
| int base = (bb*H+hh)*(T/_CHUNK_LEN_)*C*C + (t/_CHUNK_LEN_)*C*C + i*C; | ||
| #pragma unroll | ||
| for (int j = 0; j < C; j++) { | ||
| stateT[j] = s_[base + j]; | ||
| } | ||
| } | ||
|
|
||
| float dq = 0; | ||
| #pragma unroll | ||
| for (int j = 0; j < C; j++) { | ||
| dq += stateT[j]*dy[j]; | ||
| } | ||
| dq_[ind] = to_bf(dq); | ||
|
|
||
| float iwi = 1.0f/wi; | ||
| #pragma unroll | ||
| for (int j = 0; j < C; j++) { | ||
| stateT[j] = (stateT[j] - ki*v[j] - bi*sa[j]) * iwi; | ||
| dstate[j] += dyi * q[j]; | ||
| dstateT[j] += qi * dy[j]; | ||
| } | ||
|
|
||
| float dw = 0, dk = 0, dv = 0, db = 0, dSb = 0; | ||
| #pragma unroll | ||
| for (int j = 0; j < C; j++) { | ||
| dw += dstateT[j]*stateT[j]; | ||
| dk += dstateT[j]*v[j]; | ||
| dv += dstate[j]*k[j]; | ||
| dSb += dstate[j]*b[j]; | ||
| db += dstateT[j]*sa[j]; | ||
| } | ||
| dw_[ind] = to_bf(dw * wi * wi_fac); | ||
| dk_[ind] = to_bf(dk); | ||
| dv_[ind] = to_bf(dv); | ||
| db_[ind] = to_bf(db); | ||
|
|
||
| __syncthreads(); | ||
| dSb_shared[i] = dSb; | ||
| __syncthreads(); | ||
|
|
||
| float da = 0; | ||
| #pragma unroll | ||
| for (int j = 0; j < C; j++) { | ||
| da += stateT[j]*dSb_shared[j]; | ||
| } | ||
| da_[ind] = to_bf(da); | ||
|
|
||
| #pragma unroll | ||
| for (int j = 0; j < C; j++) { | ||
| dstate[j] = dstate[j]*w[j] + dSb * a[j]; | ||
| dstateT[j] = dstateT[j]*wi + ai * dSb_shared[j]; | ||
| } | ||
| } | ||
| } | ||
|
|
||
| void cuda_forward(int B, int T, int H, bf*w, bf*q, bf*k, bf*v, bf*z, bf*a, bf*y, float*s, float*sa) { | ||
| hipLaunchKernelGGL(( forward_kernel), dim3(dim3(H,B)), dim3(dim3(_C_)), 0, 0, T,H,w,q,k,v,z,a,y,s,sa); | ||
| } | ||
| void cuda_backward(int B, int T, int H, bf*w, bf*q, bf*k, bf*v, bf*z, bf*a, bf*dy, float*s, float*sa, bf*dw, bf*dq, bf*dk, bf*dv, bf*dz, bf*da) { | ||
| assert(T%_CHUNK_LEN_ == 0); | ||
| hipLaunchKernelGGL(( backward_kernel), dim3(dim3(H,B)), dim3(dim3(_C_)), 0, 0, T,H,w,q,k,v,z,a,dy,s,sa,dw,dq,dk,dv,dz,da); | ||
| } |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,30 @@ | ||
| #include <torch/extension.h> | ||
|
|
||
| struct __nv_bfloat16; | ||
| using bf = __nv_bfloat16; | ||
|
|
||
| void cuda_forward(int B, int T, int H, bf*w, bf*q, bf*k, bf*v, bf*z, bf*a, bf*y, float*s, float*sa); | ||
|
|
||
| void forward(torch::Tensor &w, torch::Tensor &q, torch::Tensor &k, torch::Tensor &v, torch::Tensor &z, torch::Tensor &a, torch::Tensor &y, torch::Tensor &s, torch::Tensor &sa) { | ||
| int B = w.sizes()[0], T = w.sizes()[1], H = w.sizes()[2]; | ||
| cuda_forward(B, T, H, (bf*)w.data_ptr(), (bf*)q.data_ptr(), (bf*)k.data_ptr(), (bf*)v.data_ptr(), (bf*)z.data_ptr(), (bf*)a.data_ptr(), (bf*)y.data_ptr(), (float*)s.data_ptr(), (float*)sa.data_ptr()); | ||
| } | ||
|
|
||
| void cuda_backward(int B, int T, int H, bf*w, bf*q, bf*k, bf*v, bf*z, bf*a, bf*dy, float*s, float*sa, bf*dw, bf*dq, bf*dk, bf*dv, bf*dz, bf*da); | ||
|
|
||
| void backward(torch::Tensor &w, torch::Tensor &q, torch::Tensor &k, torch::Tensor &v, torch::Tensor &z, torch::Tensor &a, torch::Tensor &dy, | ||
| torch::Tensor &s, torch::Tensor &sa, torch::Tensor &dw, torch::Tensor &dq, torch::Tensor &dk, torch::Tensor &dv, torch::Tensor &dz, torch::Tensor &da) { | ||
| int B = w.sizes()[0], T = w.sizes()[1], H = w.sizes()[2]; | ||
| cuda_backward(B, T, H, (bf*)w.data_ptr(), (bf*)q.data_ptr(), (bf*)k.data_ptr(), (bf*)v.data_ptr(), (bf*)z.data_ptr(), (bf*)a.data_ptr(), (bf*)dy.data_ptr(), | ||
| (float*)s.data_ptr(), (float*)sa.data_ptr(), (bf*)dw.data_ptr(), (bf*)dq.data_ptr(), (bf*)dk.data_ptr(), (bf*)dv.data_ptr(), (bf*)dz.data_ptr(), (bf*)da.data_ptr()); | ||
| } | ||
|
|
||
| TORCH_LIBRARY(wind_backstepping, m) { | ||
| m.def("forward(Tensor w, Tensor q, Tensor k, Tensor v, Tensor z, Tensor a, Tensor(a!) y, Tensor(b!) s, Tensor(c!) sa) -> ()"); | ||
| m.def("backward(Tensor w, Tensor q, Tensor k, Tensor v, Tensor z, Tensor a, Tensor dy, Tensor s, Tensor sa, Tensor(a!) dw, Tensor(b!) dq, Tensor(c!) dk, Tensor(d!) dv, Tensor(e!) dz, Tensor(f!) da) -> ()"); | ||
| } | ||
|
|
||
| TORCH_LIBRARY_IMPL(wind_backstepping, CUDA, m) { | ||
| m.impl("forward", &forward); | ||
| m.impl("backward", &backward); | ||
| } | ||
AswarS marked this conversation as resolved.
Show resolved
Hide resolved
|
||
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,30 @@ | ||
| #include <torch/extension.h> | ||
|
|
||
| struct __hip_bfloat16; | ||
| using bf = __hip_bfloat16; | ||
|
|
||
| void cuda_forward(int B, int T, int H, bf*w, bf*q, bf*k, bf*v, bf*z, bf*a, bf*y, float*s, float*sa); | ||
|
|
||
| void forward(torch::Tensor &w, torch::Tensor &q, torch::Tensor &k, torch::Tensor &v, torch::Tensor &z, torch::Tensor &a, torch::Tensor &y, torch::Tensor &s, torch::Tensor &sa) { | ||
| int B = w.sizes()[0], T = w.sizes()[1], H = w.sizes()[2]; | ||
| cuda_forward(B, T, H, (bf*)w.data_ptr(), (bf*)q.data_ptr(), (bf*)k.data_ptr(), (bf*)v.data_ptr(), (bf*)z.data_ptr(), (bf*)a.data_ptr(), (bf*)y.data_ptr(), (float*)s.data_ptr(), (float*)sa.data_ptr()); | ||
| } | ||
|
|
||
| void cuda_backward(int B, int T, int H, bf*w, bf*q, bf*k, bf*v, bf*z, bf*a, bf*dy, float*s, float*sa, bf*dw, bf*dq, bf*dk, bf*dv, bf*dz, bf*da); | ||
|
|
||
| void backward(torch::Tensor &w, torch::Tensor &q, torch::Tensor &k, torch::Tensor &v, torch::Tensor &z, torch::Tensor &a, torch::Tensor &dy, | ||
| torch::Tensor &s, torch::Tensor &sa, torch::Tensor &dw, torch::Tensor &dq, torch::Tensor &dk, torch::Tensor &dv, torch::Tensor &dz, torch::Tensor &da) { | ||
| int B = w.sizes()[0], T = w.sizes()[1], H = w.sizes()[2]; | ||
| cuda_backward(B, T, H, (bf*)w.data_ptr(), (bf*)q.data_ptr(), (bf*)k.data_ptr(), (bf*)v.data_ptr(), (bf*)z.data_ptr(), (bf*)a.data_ptr(), (bf*)dy.data_ptr(), | ||
| (float*)s.data_ptr(), (float*)sa.data_ptr(), (bf*)dw.data_ptr(), (bf*)dq.data_ptr(), (bf*)dk.data_ptr(), (bf*)dv.data_ptr(), (bf*)dz.data_ptr(), (bf*)da.data_ptr()); | ||
| } | ||
|
|
||
| TORCH_LIBRARY(wind_backstepping_hip, m) { | ||
| m.def("forward(Tensor w, Tensor q, Tensor k, Tensor v, Tensor z, Tensor a, Tensor(a!) y, Tensor(b!) s, Tensor(c!) sa) -> ()"); | ||
| m.def("backward(Tensor w, Tensor q, Tensor k, Tensor v, Tensor z, Tensor a, Tensor dy, Tensor s, Tensor sa, Tensor(a!) dw, Tensor(b!) dq, Tensor(c!) dk, Tensor(d!) dv, Tensor(e!) dz, Tensor(f!) da) -> ()"); | ||
| } | ||
|
|
||
| TORCH_LIBRARY_IMPL(wind_backstepping_hip, CUDA, m) { | ||
| m.impl("forward", &forward); | ||
| m.impl("backward", &backward); | ||
| } | ||
AswarS marked this conversation as resolved.
Show resolved
Hide resolved
|
||
Oops, something went wrong.
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Uh oh!
There was an error while loading. Please reload this page.