-
Notifications
You must be signed in to change notification settings - Fork 88
/
Copy pathJointPathEx.cpp
662 lines (589 loc) · 26.7 KB
/
JointPathEx.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
#include "JointPathEx.h"
#include <iostream>
#include <iomanip>
#include <limits.h>
#include <float.h>
#include <hrpUtil/MatrixSolvers.h>
#define deg2rad(x)((x)*M_PI/180)
#define rad2deg(rad) (rad * 180 / M_PI)
#define eps_eq(a, b, c) (fabs((a)-(b)) <= c)
std::ostream& operator<<(std::ostream& out, hrp::dmatrix &a) {
const int c = a.rows();
const int n = a.cols();
for(int i = 0; i < c; i++){
out << " :";
for(int j = 0; j < n; j++){
out << " " << std::setw(7) << std::setiosflags(std::ios::fixed) << std::setprecision(4) << (a)(i,j);
}
out << std::endl;
}
return out;
}
std::ostream& operator<<(std::ostream& out, hrp::dvector &a) {
const int n = a.size();
for(int i = 0; i < n; i++){
out << std::setw(7) << std::setiosflags(std::ios::fixed) << std::setprecision(4) << a(i) << " ";
}
out << std::endl;
return out;
}
//#define DEBUG true
#define DEBUG false
using namespace std;
using namespace hrp;
int hrp::calcSRInverse(const dmatrix& _a, dmatrix &_a_sr, double _sr_ratio, dmatrix _w) {
// J# = W Jt(J W Jt + kI)-1 (Weighted SR-Inverse)
// SR-inverse :
// Y. Nakamura and H. Hanafusa : "Inverse Kinematic Solutions With
// Singularity Robustness for Robot Manipulator Control"
// J. Dyn. Sys., Meas., Control 1986. vol 108, Issue 3, pp. 163--172.
const int c = _a.rows(); // 6
const int n = _a.cols(); // n
if ( _w.cols() != n || _w.rows() != n ) {
_w = dmatrix::Identity(n, n);
}
dmatrix at = _a.transpose();
dmatrix a1(c, c);
a1 = (_a * _w * at + _sr_ratio * dmatrix::Identity(c,c)).inverse();
//if (DEBUG) { dmatrix aat = _a * at; std::cerr << " a*at :" << std::endl << aat; }
_a_sr = _w * at * a1;
//if (DEBUG) { dmatrix ii = _a * _a_sr; std::cerr << " i :" << std::endl << ii; }
return 0;
}
// overwrite hrplib/hrpUtil/Eigen3d.cpp
Vector3 omegaFromRotEx(const Matrix33& r)
{
using ::std::numeric_limits;
double alpha = (r(0,0) + r(1,1) + r(2,2) - 1.0) / 2.0;
if(fabs(alpha - 1.0) < 1.0e-12) { //th=0,2PI;
return Vector3::Zero();
} else {
double th = acos(alpha);
double s = sin(th);
if (s < numeric_limits<double>::epsilon()) { //th=PI
return Vector3( sqrt((r(0,0)+1)*0.5)*th, sqrt((r(1,1)+1)*0.5)*th, sqrt((r(2,2)+1)*0.5)*th );
}
double k = -0.5 * th / s;
return Vector3( (r(1,2) - r(2,1)) * k,
(r(2,0) - r(0,2)) * k,
(r(0,1) - r(1,0)) * k );
}
}
JointPathEx::JointPathEx(BodyPtr& robot, Link* base, Link* end, double control_cycle, bool _use_inside_joint_weight_retrieval, const std::string& _debug_print_prefix)
: JointPath(base, end), maxIKPosErrorSqr(1.0e-8), maxIKRotErrorSqr(1.0e-6), maxIKIteration(50), interlocking_joint_pair_indices(), sr_gain(1.0), manipulability_limit(0.1), manipulability_gain(0.001), dt(control_cycle),
debug_print_prefix(_debug_print_prefix+",JointPathEx"), joint_limit_debug_print_counts(numJoints(), 0),
debug_print_freq_count(static_cast<size_t>(0.25/dt)), // once per 0.25[s]
use_inside_joint_weight_retrieval(_use_inside_joint_weight_retrieval) {
for (unsigned int i = 0 ; i < numJoints(); i++ ) {
joints.push_back(joint(i));
}
avoid_weight_gain.resize(numJoints());
optional_weight_vector.resize(numJoints());
for (unsigned int i = 0 ; i < numJoints(); i++ ) {
optional_weight_vector[i] = 1.0;
}
}
void JointPathEx::setMaxIKError(double epos, double erot) {
maxIKPosErrorSqr = epos*epos;
maxIKRotErrorSqr = erot*erot;
}
void JointPathEx::setMaxIKError(double e)
{
maxIKErrorSqr = e * e;
}
void JointPathEx::setMaxIKIteration(int iter) {
maxIKIteration = iter;
}
bool JointPathEx::setInterlockingJointPairIndices (const std::vector<std::pair<Link*, Link*> >& pairs, const std::string& print_str) {
// Convert pair<Link*, Link*> => pair<size_t, size_t>
std::vector< std::pair<size_t, size_t> > tmp_vec;
for (size_t i = 0; i < pairs.size(); i++) {
std::pair<size_t, size_t> tmp_pair;
bool is_first_ok = false, is_second_ok = false;
for (size_t j = 0; j < joints.size(); j++) {
if (joints[j]->name == pairs[i].first->name) {
tmp_pair.first = j;
is_first_ok = true;
} else if (joints[j]->name == pairs[i].second->name) {
tmp_pair.second = j;
is_second_ok = true;
}
}
if (is_first_ok && is_second_ok) tmp_vec.push_back(tmp_pair);
}
if (tmp_vec.size() > 0) {
std::cerr << "[" << print_str << "] Interlocking_joint_pair_indices is set => ";
for (size_t j = 0; j < tmp_vec.size(); j++) {
std::cerr << "[" << joints[tmp_vec[j].first]->name << ", " << joints[tmp_vec[j].second]->name << "] ";
}
std::cerr << std::endl;
return setInterlockingJointPairIndices(tmp_vec);
} else {
std::cerr << "[" << print_str << "] No interlocking_joint_pair_indices set." << std::endl;
return false;
}
};
bool JointPathEx::setInterlockingJointPairIndices (const std::vector<std::pair<size_t, size_t> >& pairs) {
interlocking_joint_pair_indices = pairs;
return true;
};
void JointPathEx::getInterlockingJointPairIndices (std::vector<std::pair<size_t, size_t> >& pairs) {
pairs = interlocking_joint_pair_indices;
};
bool JointPathEx::calcJacobianInverseNullspace(dmatrix &J, dmatrix &Jinv, dmatrix &Jnull) {
const int n = numJoints();
hrp::dmatrix w = hrp::dmatrix::Identity(n,n);
//
// wmat/weight: weighting joint angle weight
//
// w_i = 1 + | dH/dt | if d|dH/dt| >= 0
// = 1 if d|dH/dt| < 0
// dH/dt = (t_max - t_min)^2 (2t - t_max - t_min)
// / 4 (t_max - t)^2 (t - t_min)^2
//
// T. F. Chang and R.-V. Dubey: "A weighted least-norm solution based
// scheme for avoiding joint limits for redundant manipulators", in IEEE
// Trans. On Robotics and Automation, 11((2):286-292, April 1995.
//
for ( int j = 0; j < n ; j++ ) {
double jang = joints[j]->q;
double jmax = joints[j]->ulimit;
double jmin = joints[j]->llimit;
double e = deg2rad(1);
if ( eps_eq(jang, jmax,e) && eps_eq(jang, jmin,e) ) {
} else if ( eps_eq(jang, jmax,e) ) {
jang = jmax - e;
} else if ( eps_eq(jang, jmin,e) ) {
jang = jmin + e;
}
double r;
if ( eps_eq(jang, jmax,e) && eps_eq(jang, jmin,e) ) {
r = DBL_MAX;
} else {
r = fabs( (pow((jmax - jmin),2) * (( 2 * jang) - jmax - jmin)) /
(4 * pow((jmax - jang),2) * pow((jang - jmin),2)) );
if (std::isnan(r)) r = 0;
}
// If use_inside_joint_weight_retrieval = true (true by default), use T. F. Chang and R.-V. Dubeby weight retrieval inward.
// Otherwise, joint weight is always calculated from limit value to resolve https://github.com/fkanehiro/hrpsys-base/issues/516.
if (( r - avoid_weight_gain[j] ) >= 0 ) {
w(j, j) = optional_weight_vector[j] * ( 1.0 / ( 1.0 + r) );
} else {
if (use_inside_joint_weight_retrieval)
w(j, j) = optional_weight_vector[j] * 1.0;
else
w(j, j) = optional_weight_vector[j] * ( 1.0 / ( 1.0 + r) );
}
avoid_weight_gain[j] = r;
}
if ( DEBUG ) {
std::cerr << " cost :";
for(int j = 0; j < n; j++ ) { std::cerr << std::setw(8) << std::setiosflags(std::ios::fixed) << std::setprecision(4) << avoid_weight_gain[j]; }
std::cerr << std::endl;
std::cerr << " optw :";
for(int j = 0; j < n; j++ ) { std::cerr << std::setw(8) << std::setiosflags(std::ios::fixed) << std::setprecision(4) << optional_weight_vector[j]; }
std::cerr << std::endl;
std::cerr << " w :";
for(int j = 0; j < n; j++ ) { std::cerr << std::setw(8) << std::setiosflags(std::ios::fixed) << std::setprecision(4) << w(j, j); }
std::cerr << std::endl;
}
double manipulability = sqrt((J*J.transpose()).determinant());
double k = 0;
if ( manipulability < manipulability_limit ) {
k = manipulability_gain * pow((1 - ( manipulability / manipulability_limit )), 2);
}
if ( DEBUG ) {
std::cerr << " manipulability = " << manipulability << " < " << manipulability_limit << ", k = " << k << " -> " << sr_gain * k << std::endl;
}
calcSRInverse(J, Jinv, sr_gain * k, w);
Jnull = ( hrp::dmatrix::Identity(n, n) - Jinv * J);
return true;
}
bool JointPathEx::calcInverseKinematics2Loop(const Vector3& dp, const Vector3& omega,
const double LAMBDA, const double avoid_gain, const double reference_gain, const hrp::dvector* reference_q) {
const int n = numJoints();
if ( DEBUG ) {
std::cerr << "angle :";
for(int j=0; j < n; ++j){
std::cerr << std::setw(8) << std::setiosflags(std::ios::fixed) << std::setprecision(4) << rad2deg(joints[j]->q);
}
std::cerr << endl;
}
size_t ee_workspace_dim = 6; // End-effector workspace dimensions including pos(3) and rot(3)
size_t ij_workspace_dim = interlocking_joint_pair_indices.size(); // Dimensions for interlocking joints constraint. 0 by default.
size_t workspace_dim = ee_workspace_dim + ij_workspace_dim;
// Total jacobian, workspace velocty, and so on
hrp::dmatrix J(workspace_dim, n);
dvector v(workspace_dim);
hrp::dmatrix Jinv(n, workspace_dim);
hrp::dmatrix Jnull(n, n);
hrp::dvector dq(n);
if (ij_workspace_dim > 0) {
v << dp, omega, dvector::Zero(ij_workspace_dim);
hrp::dmatrix ee_J = dmatrix::Zero(ee_workspace_dim, n);
calcJacobian(ee_J);
hrp::dmatrix ij_J = dmatrix::Zero(ij_workspace_dim, n);
for (size_t i = 0; i < ij_workspace_dim; i++) {
std::pair<size_t, size_t>& pair = interlocking_joint_pair_indices[i];
ij_J(i, pair.first) = 1;
ij_J(i, pair.second) = -1;
}
J << ee_J, ij_J;
} else {
v << dp, omega;
calcJacobian(J);
}
calcJacobianInverseNullspace(J, Jinv, Jnull);
dq = Jinv * v; // dq = pseudoInverse(J) * v
if ( DEBUG ) {
std::cerr << " v :";
for(int j=0; j < v.size(); ++j){
std::cerr << " " << v(j);
}
std::cerr << std::endl;
std::cerr << " J :" << std::endl << J;
std::cerr << " Jinv :" << std::endl << Jinv;
}
// If avoid_gain is set, add joint limit avoidance by null space vector
if ( avoid_gain > 0.0 ) {
// dq = J#t a dx + ( I - J# J ) Jt b dx
// avoid-nspace-joint-limit: avoiding joint angle limit
//
// dH/dq = (((t_max + t_min)/2 - t) / ((t_max - t_min)/2)) ^2
hrp::dvector u(n);
for ( int j = 0; j < n ; j++ ) {
double jang = joint(j)->q;
double jmax = joint(j)->ulimit;
double jmin = joint(j)->llimit;
double r = ((( (jmax + jmin) / 2.0) - jang) / ((jmax - jmin) / 2.0));
if ( r > 0 ) { r = r*r; } else { r = - r*r; }
u[j] = optional_weight_vector[j] * avoid_gain * r;
}
if ( DEBUG ) {
std::cerr << " u(jl):";
for(int j=0; j < n; ++j){
std::cerr << std::setw(8) << std::setiosflags(std::ios::fixed) << std::setprecision(4) << rad2deg(u(j));
}
std::cerr << std::endl;
std::cerr << " JN*u :";
hrp::dvector Jnullu = Jnull * u;
for(int j=0; j < n; ++j){
std::cerr << std::setw(8) << std::setiosflags(std::ios::fixed) << std::setprecision(4) << rad2deg(Jnullu(j));
}
std::cerr << std::endl;
}
dq = dq + Jnull * u;
}
// If reference_gain and reference_q are set, add following to reference_q by null space vector
if ( reference_gain > 0.0 && reference_q != NULL ) {
//
// qref - qcurr
hrp::dvector u(n);
for ( unsigned int j = 0; j < numJoints(); j++ ) {
u[j] = optional_weight_vector[j] * reference_gain * ( (*reference_q)[joint(j)->jointId] - joint(j)->q );
}
if ( DEBUG ) {
std::cerr << "u(ref):";
for(int j=0; j < n; ++j){
std::cerr << std::setw(8) << std::setiosflags(std::ios::fixed) << std::setprecision(4) << rad2deg(u(j));
}
std::cerr << std::endl;
std::cerr << " JN*u:";
hrp::dvector nullu = Jnull * u;
for(int j=0; j < n; ++j){
std::cerr << std::setw(8) << std::setiosflags(std::ios::fixed) << std::setprecision(4) << rad2deg(nullu(j));
}
std::cerr << std::endl;
}
dq = dq + Jnull * u;
}
if ( DEBUG ) {
std::cerr << " dq :";
for(int j=0; j < n; ++j){
std::cerr << std::setw(8) << std::setiosflags(std::ios::fixed) << std::setprecision(4) << rad2deg(dq(j));
}
std::cerr << std::endl;
}
// dq limitation using lvlimit/uvlimit
double min_speed_ratio = 1.0;
for(int j=0; j < n; ++j){
double speed_ratio = 1.0;
if (dq(j) < joints[j]->lvlimit * dt) {
speed_ratio = fabs(joints[j]->lvlimit * dt / dq(j));
} else if (dq(j) > joints[j]->uvlimit * dt) {
speed_ratio = fabs(joints[j]->uvlimit * dt / dq(j));
}
min_speed_ratio = std::max(std::min(min_speed_ratio, speed_ratio), 0.0);
}
if ( min_speed_ratio < 1.0 ) {
if ( DEBUG ) {
std::cerr << "spdlmt: ";
for(int j=0; j < n; ++j) { std::cerr << dq(j) << " "; } std::cerr << std::endl;
}
for(int j=0; j < n; ++j) {
dq(j) = dq(j) * min_speed_ratio; // make
}
if ( DEBUG ) {
std::cerr << "spdlmt: ";
for(int j=0; j < n; ++j) { std::cerr << dq(j) << " "; } std::cerr << std::endl;
}
}
// check nan / inf
bool solve_linear_equation = true;
for(int j=0; j < n; ++j){
if ( std::isnan(dq(j)) || std::isinf(dq(j)) ) {
solve_linear_equation = false;
break;
}
}
if ( ! solve_linear_equation ) {
std::cerr << "[" << debug_print_prefix << "] ERROR nan/inf is found" << std::endl;
return false;
}
// joint angles update
for(int j=0; j < n; ++j){
joints[j]->q += LAMBDA * dq(j);
}
// If interlocking joints are defined, set interlocking joints by mid point
for (size_t i = 0; i < interlocking_joint_pair_indices.size(); i++) {
std::pair<size_t, size_t>& pair = interlocking_joint_pair_indices[i];
double midp = (joints[pair.first]->q + joints[pair.second]->q)/2.0;
joints[pair.first]->q = midp;
joints[pair.second]->q = midp;
}
// upper/lower limit check
for(int j=0; j < n; ++j){
bool is_limit_over = false;
if ( joints[j]->q > joints[j]->ulimit) {
is_limit_over = true;
if (joint_limit_debug_print_counts[j] % debug_print_freq_count == 0) {
std::cerr << "[" << debug_print_prefix << "] Upper joint limit over " << joints[j]->name
<< " (ja=" << joints[j]->q << "[rad], limit=" << joints[j]->ulimit << "[rad], count=" << joint_limit_debug_print_counts[j] << ", debug_print_freq_count=" << debug_print_freq_count << ")" << std::endl;
}
joints[j]->q = joints[j]->ulimit;
}
if ( joints[j]->q < joints[j]->llimit) {
is_limit_over = true;
if (joint_limit_debug_print_counts[j] % debug_print_freq_count == 0) {
std::cerr << "[" << debug_print_prefix << "] Lower joint limit over " << joints[j]->name
<< " (ja=" << joints[j]->q << "[rad], limit=" << joints[j]->llimit << "[rad], count=" << joint_limit_debug_print_counts[j] << ", debug_print_freq_count=" << debug_print_freq_count << ")" << std::endl;
}
joints[j]->q = joints[j]->llimit;
}
joints[j]->q = std::max(joints[j]->q, joints[j]->llimit);
if (is_limit_over) {
joint_limit_debug_print_counts[j]++;
} else {
joint_limit_debug_print_counts[j] = 0; // resetting
}
}
calcForwardKinematics();
return true;
}
// TODO : matrix_logEx should be omegaFromRotEx after checking on real robot testing.
hrp::Vector3 matrix_logEx(const hrp::Matrix33& m) {
hrp::Vector3 mlog;
double q0, th;
hrp::Vector3 q;
double norm;
Eigen::Quaternion<double> eiq(m);
q0 = eiq.w();
q = eiq.vec();
norm = q.norm();
if (norm > 0) {
if ((q0 > 1.0e-10) || (q0 < -1.0e-10)) {
th = 2 * std::atan(norm / q0);
} else if (q0 > 0) {
th = M_PI / 2;
} else {
th = -M_PI / 2;
}
mlog = (th / norm) * q ;
} else {
mlog = hrp::Vector3::Zero();
}
return mlog;
}
bool JointPathEx::calcInverseKinematics2Loop(const Vector3& end_effector_p, const Matrix33& end_effector_R,
const double LAMBDA, const double avoid_gain, const double reference_gain, const hrp::dvector* reference_q,
const double vel_gain,
const hrp::Vector3& localPos, const hrp::Matrix33& localR)
{
hrp::Matrix33 target_link_R(end_effector_R * localR.transpose());
hrp::Vector3 target_link_p(end_effector_p - target_link_R * localPos);
hrp::Vector3 vel_p(target_link_p - endLink()->p);
// TODO : matrix_logEx should be omegaFromRotEx after checking on real robot testing.
//hrp::Vector3 vel_r(endLink()->R * omegaFromRotEx(endLink()->R.transpose() * target_link_R));
hrp::Vector3 vel_r(endLink()->R * matrix_logEx(endLink()->R.transpose() * target_link_R));
vel_p *= vel_gain;
vel_r *= vel_gain;
return calcInverseKinematics2Loop(vel_p, vel_r, LAMBDA, avoid_gain, reference_gain, reference_q);
}
bool JointPathEx::calcInverseKinematics2(const Vector3& end_p, const Matrix33& end_R,
const double avoid_gain, const double reference_gain, const hrp::dvector* reference_q)
{
static const int MAX_IK_ITERATION = maxIKIteration;
static const double LAMBDA = 0.9;
LinkPath linkPath(baseLink(), endLink());
if(joints.empty()){
if(linkPath.empty()){
return false;
}
if(baseLink() == endLink()){
baseLink()->p = end_p;
baseLink()->R = end_R;
return true;
} else {
// \todo implement here
return false;
}
}
const int n = numJoints();
dvector qorg(n);
Link* target = linkPath.endLink();
for(int i=0; i < n; ++i){
qorg[i] = joints[i]->q;
avoid_weight_gain[i] = 100000000000000000000.0;
}
double errsqr = DBL_MAX;//maxIKErrorSqr * 100.0;
double errsqr0 = errsqr;
bool converged = false;
int iter = 0;
for(iter = 0; iter < MAX_IK_ITERATION; iter++){
if ( DEBUG ) {
std::cerr << " iter : " << iter << " / " << MAX_IK_ITERATION << ", n = " << n << std::endl;
}
Vector3 dp(end_p - target->p);
Vector3 omega(target->R * omegaFromRotEx(target->R.transpose() * end_R));
if ( dp.norm() > 0.1 ) dp = dp*0.1/dp.norm();
if ( omega.norm() > 0.5 ) omega = omega*0.5/omega.norm();
if ( DEBUG ) {
std::cerr << " dp : " << dp[0] << " " << dp[1] << " " << dp[2] << std::endl;
std::cerr << "omega : " << omega[0] << " " << omega[1] << " " << omega[2] << std::endl;
//std::cerr << " J :" << std::endl << J;
//std::cerr << " det : " << det(J) << std::endl;
std::cerr << " err : dp = " << dp.dot(dp) << ", omega = " << omega.dot(omega) << std::endl;
}
if(isBestEffortIKMode){
errsqr0 = errsqr;
errsqr = dp.dot(dp) + omega.dot(omega);
if ( DEBUG ) std::cerr << " err : fabs(" << std::setw(18) << std::setiosflags(std::ios::fixed) << std::setprecision(14) << errsqr << " - " << errsqr0 << ") = " << fabs(errsqr-errsqr0) << " < " << maxIKErrorSqr << " BestEffortIKMode" << std::endl;
if(fabs(errsqr - errsqr0) < maxIKErrorSqr){
converged = true;
break;
}
} else {
if ( DEBUG ) std::cerr << " err : " << std::setw(18) << std::setiosflags(std::ios::fixed) << std::setprecision(14) << sqrt(dp.dot(dp)) << " < " << sqrt(maxIKPosErrorSqr) << ", " << std::setw(18) << std::setiosflags(std::ios::fixed) << std::setprecision(14) << sqrt(omega.dot(omega)) << " < " << sqrt(maxIKRotErrorSqr) << std::endl;
if( (dp.dot(dp) < maxIKPosErrorSqr) && (omega.dot(omega) < maxIKRotErrorSqr) ) {
converged = true;
break;
}
}
if ( !calcInverseKinematics2Loop(dp, omega, LAMBDA, avoid_gain, reference_gain, reference_q) )
return false;
}
if(!converged){
std::cerr << "IK Fail, iter = " << iter << std::endl;
Vector3 dp(end_p - target->p);
Vector3 omega(target->R * omegaFromRotEx(target->R.transpose() * end_R));
const double errsqr = dp.dot(dp) + omega.dot(omega);
if(isBestEffortIKMode){
std::cerr << " err : fabs(" << errsqr << " - " << errsqr0 << ") = " << fabs(errsqr-errsqr0) << " < " << maxIKErrorSqr << " BestEffortIKMode" << std::endl;
} else {
std::cerr << " err : " << dp.dot(dp) << " ( " << dp[0] << " " << dp[1] << " " << dp[2] << ") < " << maxIKPosErrorSqr << std::endl;
std::cerr << " : " << omega.dot(omega) << " ( " << omega[0] << " " << omega[1] << " " << omega[2] << ") < " << maxIKRotErrorSqr << std::endl;
}
for(int i=0; i < n; ++i){
joints[i]->q = qorg[i];
}
calcForwardKinematics();
}
return converged;
}
void hrp::readVirtualForceSensorParamFromProperties (std::map<std::string, hrp::VirtualForceSensorParam>& vfs,
hrp::BodyPtr m_robot,
const std::string& prop_string,
const std::string& instance_name)
{
coil::vstring virtual_force_sensor = coil::split(prop_string, ",");
unsigned int nvforce = virtual_force_sensor.size()/10;
for (unsigned int i=0; i<nvforce; i++){
std::string name = virtual_force_sensor[i*10+0];
hrp::dvector tr(7);
for (int j = 0; j < 7; j++ ) {
coil::stringTo(tr[j], virtual_force_sensor[i*10+3+j].c_str());
}
vfs.insert(std::pair<std::string, VirtualForceSensorParam>(name, VirtualForceSensorParam()));
VirtualForceSensorParam& p = vfs[name];
p.localPos = hrp::Vector3(tr[0], tr[1], tr[2]);
p.localR = Eigen::AngleAxis<double>(tr[6], hrp::Vector3(tr[3],tr[4],tr[5])).toRotationMatrix(); // rotation in VRML is represented by axis + angle
p.link = m_robot->link(virtual_force_sensor[i*10+2]);
p.id = i;
std::cerr << "[" << instance_name << "] virtual force sensor" << std::endl;
std::cerr << "[" << instance_name << "] name = " << name << ", parent = " << p.link->name << ", id = " << p.id << std::endl;
std::cerr << "[" << instance_name << "] localP = " << p.localPos.format(Eigen::IOFormat(Eigen::StreamPrecision, 0, ", ", ", ", "", "", "[", "]")) << "[m]" << std::endl;
std::cerr << "[" << instance_name << "] localR = " << p.localR.format(Eigen::IOFormat(Eigen::StreamPrecision, 0, ", ", "\n", " [", "]")) << std::endl;
}
};
void hrp::readInterlockingJointsParamFromProperties (std::vector<std::pair<Link*, Link*> >& pairs,
hrp::BodyPtr m_robot,
const std::string& prop_string,
const std::string& instance_name)
{
coil::vstring interlocking_joints_str = coil::split(prop_string, ",");
size_t ij_prop_num = 2;
if (interlocking_joints_str.size() > 0) {
size_t num = interlocking_joints_str.size()/ij_prop_num;
for (size_t i = 0; i < num; i++) {
//std::cerr << "[" << instance_name << "] Interlocking Joints [" << interlocking_joints_str[i*ij_prop_num] << "], [" << interlocking_joints_str[i*ij_prop_num+1] << "]" << std::endl;
hrp::Link* link1 = m_robot->link(interlocking_joints_str[i*ij_prop_num]);
hrp::Link* link2 = m_robot->link(interlocking_joints_str[i*ij_prop_num+1]);
if (link1 == NULL || link2 == NULL) {
std::cerr << "[" << instance_name << "] No such interlocking joints [" << interlocking_joints_str[i*ij_prop_num] << "], [" << interlocking_joints_str[i*ij_prop_num+1] << "]" << std::endl;
continue;
}
std::pair<hrp::Link*, hrp::Link*> pair(link1, link2);
pairs.push_back(pair);
};
}
};
void hrp::calcAccelerationsForInverseDynamics(const hrp::BodyPtr _m_robot, InvDynStateBuffer& _idsb){
for(int i=0;i<_m_robot->numJoints();i++)_idsb.q(i) = _m_robot->joint(i)->q;
_idsb.dq = (_idsb.q - _idsb.q_old) / _idsb.DT;
_idsb.ddq = (_idsb.q - 2 * _idsb.q_old + _idsb.q_oldold) / (_idsb.DT * _idsb.DT);
const hrp::Vector3 g(0, 0, 9.80665);
_idsb.base_p = _m_robot->rootLink()->p;
_idsb.base_v = (_idsb.base_p - _idsb.base_p_old) / _idsb.DT;
_idsb.base_dv = g + (_idsb.base_p - 2 * _idsb.base_p_old + _idsb.base_p_oldold) / (_idsb.DT * _idsb.DT);
_idsb.base_R = _m_robot->rootLink()->R;
_idsb.base_dR = (_idsb.base_R - _idsb.base_R_old) / _idsb.DT;
_idsb.base_w_hat = _idsb.base_dR * _idsb.base_R.transpose();
_idsb.base_w = hrp::Vector3(_idsb.base_w_hat(2,1), - _idsb.base_w_hat(0,2), _idsb.base_w_hat(1,0));
_idsb.base_dw = (_idsb.base_w - _idsb.base_w_old) / _idsb.DT;
};
void hrp::calcRootLinkWrenchFromInverseDynamics(hrp::BodyPtr _m_robot, InvDynStateBuffer& _idsb, hrp::Vector3& _f_ans, hrp::Vector3& _t_ans){
for(int i=0;i<_m_robot->numJoints();i++){
_m_robot->joint(i)->dq = _idsb.dq(i);
_m_robot->joint(i)->ddq = _idsb.ddq(i);
}
_m_robot->rootLink()->vo = _idsb.base_v - _idsb.base_w.cross(_idsb.base_p);
_m_robot->rootLink()->dvo = _idsb.base_dv - _idsb.base_dw.cross(_idsb.base_p) - _idsb.base_w.cross(_idsb.base_v); // calc in differential way
_m_robot->rootLink()->w = _idsb.base_w;
_m_robot->rootLink()->dw = _idsb.base_dw;
_m_robot->calcForwardKinematics(true,true);// calc every link's acc and vel
_m_robot->calcInverseDynamics(_m_robot->rootLink(), _f_ans, _t_ans);// this returns f,t at the coordinate origin (not at base link pos)
};
void hrp::calcWorldZMPFromInverseDynamics(hrp::BodyPtr _m_robot, InvDynStateBuffer& _idsb, hrp::Vector3& _zmp_ans){
hrp::Vector3 f_tmp, t_tmp;
calcRootLinkWrenchFromInverseDynamics(_m_robot, _idsb, f_tmp, t_tmp);
_zmp_ans(0) = -t_tmp(1)/f_tmp(2);
_zmp_ans(1) = t_tmp(0)/f_tmp(2);
};
void hrp::updateInvDynStateBuffer(InvDynStateBuffer& _idsb){
_idsb.q_oldold = _idsb.q_old;
_idsb.q_old = _idsb.q;
_idsb.base_p_oldold = _idsb.base_p_old;
_idsb.base_p_old = _idsb.base_p;
_idsb.base_R_old = _idsb.base_R;
_idsb.base_w_old = _idsb.base_w;
};