-
Notifications
You must be signed in to change notification settings - Fork 0
/
imageDenoising_nlm_kernel.cuh
175 lines (149 loc) · 6.2 KB
/
imageDenoising_nlm_kernel.cuh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
/*
* Copyright 1993-2015 NVIDIA Corporation. All rights reserved.
*
* Please refer to the NVIDIA end user license agreement (EULA) associated
* with this source code for terms and conditions that govern your use of
* this software. Any use, reproduction, disclosure, or distribution of
* this software and related documentation outside the terms of the EULA
* is strictly prohibited.
*
*/
////////////////////////////////////////////////////////////////////////////////
// NLM kernel
////////////////////////////////////////////////////////////////////////////////
__global__ void NLM(
TColor *dst,
int imageW,
int imageH,
float Noise,
float lerpC,
cudaTextureObject_t texImage
)
{
const int ix = blockDim.x * blockIdx.x + threadIdx.x;
const int iy = blockDim.y * blockIdx.y + threadIdx.y;
//Add half of a texel to always address exact texel centers
const float x = (float)ix + 0.5f;
const float y = (float)iy + 0.5f;
if (ix < imageW && iy < imageH)
{
//Normalized counter for the NLM weight threshold
float fCount = 0;
//Total sum of pixel weights
float sumWeights = 0;
//Result accumulator
float3 clr = {0, 0, 0};
//Cycle through NLM window, surrounding (x, y) texel
for (float i = -NLM_WINDOW_RADIUS; i <= NLM_WINDOW_RADIUS; i++)
for (float j = -NLM_WINDOW_RADIUS; j <= NLM_WINDOW_RADIUS; j++)
{
//Find color distance from (x, y) to (x + j, y + i)
float weightIJ = 0;
for (float n = -NLM_BLOCK_RADIUS; n <= NLM_BLOCK_RADIUS; n++)
for (float m = -NLM_BLOCK_RADIUS; m <= NLM_BLOCK_RADIUS; m++)
weightIJ += vecLen(
tex2D<float4>(texImage, x + j + m, y + i + n),
tex2D<float4>(texImage, x + m, y + n)
);
//Derive final weight from color and geometric distance
weightIJ = __expf(-(weightIJ * Noise + (i * i + j * j) * INV_NLM_WINDOW_AREA));
//Accumulate (x + j, y + i) texel color with computed weight
float4 clrIJ = tex2D<float4>(texImage, x + j, y + i);
clr.x += clrIJ.x * weightIJ;
clr.y += clrIJ.y * weightIJ;
clr.z += clrIJ.z * weightIJ;
//Sum of weights for color normalization to [0..1] range
sumWeights += weightIJ;
//Update weight counter, if NLM weight for current window texel
//exceeds the weight threshold
fCount += (weightIJ > NLM_WEIGHT_THRESHOLD) ? INV_NLM_WINDOW_AREA : 0;
}
//Normalize result color by sum of weights
sumWeights = 1.0f / sumWeights;
clr.x *= sumWeights;
clr.y *= sumWeights;
clr.z *= sumWeights;
//Choose LERP quotient basing on how many texels
//within the NLM window exceeded the weight threshold
float lerpQ = (fCount > NLM_LERP_THRESHOLD) ? lerpC : 1.0f - lerpC;
//Write final result to global memory
float4 clr00 = tex2D<float4>(texImage, x, y);
clr.x = lerpf(clr.x, clr00.x, lerpQ);
clr.y = lerpf(clr.y, clr00.y, lerpQ);
clr.z = lerpf(clr.z, clr00.z, lerpQ);
dst[imageW * iy + ix] = make_color(clr.x, clr.y, clr.z, 0);
}
}
extern "C"
void cuda_NLM(
TColor *d_dst,
int imageW,
int imageH,
float Noise,
float lerpC,
cudaTextureObject_t texImage
)
{
dim3 threads(BLOCKDIM_X, BLOCKDIM_Y);
dim3 grid(iDivUp(imageW, BLOCKDIM_X), iDivUp(imageH, BLOCKDIM_Y));
NLM<<<grid, threads>>>(d_dst, imageW, imageH, Noise, lerpC, texImage);
}
////////////////////////////////////////////////////////////////////////////////
// Stripped NLM kernel, only highlighting areas with different LERP directions
////////////////////////////////////////////////////////////////////////////////
__global__ void NLMdiag(
TColor *dst,
unsigned int imageW,
unsigned int imageH,
float Noise,
float lerpC,
cudaTextureObject_t texImage
)
{
const int ix = blockDim.x * blockIdx.x + threadIdx.x;
const int iy = blockDim.y * blockIdx.y + threadIdx.y;
//Add half of a texel to always address exact texel centers
const float x = (float)ix + 0.5f;
const float y = (float)iy + 0.5f;
if (ix < imageW && iy < imageH)
{
//Normalized counter for the weight threshold
float fCount = 0;
//Cycle through NLM window, surrounding (x, y) texel
for (float i = -NLM_WINDOW_RADIUS; i <= NLM_WINDOW_RADIUS; i++)
for (float j = -NLM_WINDOW_RADIUS; j <= NLM_WINDOW_RADIUS; j++)
{
//Find color distance between (x, y) and (x + j, y + i)
float weightIJ = 0;
for (float n = -NLM_BLOCK_RADIUS; n <= NLM_BLOCK_RADIUS; n++)
for (float m = -NLM_BLOCK_RADIUS; m <= NLM_BLOCK_RADIUS; m++)
weightIJ += vecLen(
tex2D<float4>(texImage, x + j + m, y + i + n),
tex2D<float4>(texImage, x + m, y + n)
);
//Derive final weight from color and geometric distance
weightIJ = __expf(-(weightIJ * Noise + (i * i + j * j) * INV_NLM_WINDOW_AREA));
//Increase the weight threshold counter
fCount += (weightIJ > NLM_WEIGHT_THRESHOLD) ? INV_NLM_WINDOW_AREA : 0;
}
//Choose LERP quotient basing on how many texels
//within the NLM window exceeded the LERP threshold
float lerpQ = (fCount > NLM_LERP_THRESHOLD) ? 1.0f : 0;
//Write final result to global memory
dst[imageW * iy + ix] = make_color(lerpQ, 0, (1.0f - lerpQ), 0);
};
}
extern "C"
void cuda_NLMdiag(
TColor *d_dst,
int imageW,
int imageH,
float Noise,
float lerpC,
cudaTextureObject_t texImage
)
{
dim3 threads(BLOCKDIM_X, BLOCKDIM_Y);
dim3 grid(iDivUp(imageW, BLOCKDIM_X), iDivUp(imageH, BLOCKDIM_Y));
NLMdiag<<<grid, threads>>>(d_dst, imageW, imageH, Noise, lerpC, texImage);
}