-
Notifications
You must be signed in to change notification settings - Fork 31
/
Copy pathsolver.py
240 lines (202 loc) · 9.61 KB
/
solver.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
import glob
from collections import OrderedDict, defaultdict
import dill
import wandb
import pytorch_lightning as pl
from pytorch_lightning import LightningModule
import torch_optimizer as optim_extra
import torch
from torch import optim
from torch.utils.data import ConcatDataset, DataLoader
import torchaudio
from dataloader import (LibriSpeechDataset, MixedDataset, TrainTestDataset,
TrainValTestDataset, collate_fn_padd, spectral_size)
from next_frame_classifier import NextFrameClassifier
from utils import (PrecisionRecallMetric, StatsMeter,
detect_peaks, line, max_min_norm, replicate_first_k_frames)
class Solver(LightningModule):
def __init__(self, hparams):
super(Solver, self).__init__()
hp = hparams
self.hp = hp
self.hparams = hp
self.peak_detection_params = defaultdict(lambda: {
"prominence": 0.05,
"width": None,
"distance": None
})
self.pr = defaultdict(lambda: {
"train": PrecisionRecallMetric(),
"val": PrecisionRecallMetric(),
"test": PrecisionRecallMetric()
})
self.best_rval = defaultdict(lambda: {
"train": (0, 0),
"val": (0, 0),
"test": (0, 0)
})
self.overall_best_rval = 0
self.stats = defaultdict(lambda: {
"train": StatsMeter(),
"val": StatsMeter(),
"test": StatsMeter()
})
wandb.init(project=self.hp.project, name=hp.exp_name, config=vars(hp), tags=[hp.tag])
self.build_model()
def prepare_data(self):
# setup training set
if "timit" in self.hp.data:
train, val, test = TrainTestDataset.get_datasets(path=self.hp.timit_path)
elif "buckeye" in self.hp.data:
train, val, test = TrainValTestDataset.get_datasets(path=self.hp.buckeye_path, percent=self.hp.buckeye_percent)
else:
raise Exception("no such training data!")
if "libri" in self.hp.data:
libri_train = LibriSpeechDataset(path=self.hp.libri_path,
subset=self.hp.libri_subset,
percent=self.hp.libri_percent)
train = ConcatDataset([train, libri_train])
train.path = "\n\t+".join([dataset.path for dataset in train.datasets])
print(f"added libri ({len(libri_train)} examples)")
self.train_dataset = train
self.valid_dataset = val
self.test_dataset = test
line()
print("DATA:")
print(f"train: {self.train_dataset.path} ({len(self.train_dataset)})")
print(f"valid: {self.valid_dataset.path} ({len(self.valid_dataset)})")
print(f"test: {self.test_dataset.path} ({len(self.test_dataset)})")
line()
@pl.data_loader
def train_dataloader(self):
self.train_loader = DataLoader(self.train_dataset,
batch_size=self.hp.batch_size,
shuffle=True,
collate_fn=collate_fn_padd,
num_workers=self.hp.dataloader_n_workers)
return self.train_loader
@pl.data_loader
def val_dataloader(self):
self.valid_loader = DataLoader(self.valid_dataset,
batch_size=self.hp.batch_size,
shuffle=False,
collate_fn=collate_fn_padd,
num_workers=self.hp.dataloader_n_workers)
return self.valid_loader
@pl.data_loader
def test_dataloader(self):
self.test_loader = DataLoader(self.test_dataset,
batch_size=self.hp.batch_size,
shuffle=False,
collate_fn=collate_fn_padd,
num_workers=self.hp.dataloader_n_workers)
return self.test_loader
def build_model(self):
print("MODEL:")
self.NFC = NextFrameClassifier(self.hp)
line()
def forward(self, data_batch, batch_i, mode):
loss = 0
# TRAIN
audio, seg, phonemes, length, fname = data_batch
preds = self.NFC(audio)
NFC_loss = self.NFC.loss(preds, length)
self.stats['nfc_loss'][mode].update(NFC_loss.item())
loss += NFC_loss
# INFERENCE
if mode == "test" or (mode == "val" and self.hp.early_stop_metric == "val_max_rval"):
positives = 0
for t in self.NFC.pred_steps:
p = preds[t][0]
p = replicate_first_k_frames(p, k=t, dim=1)
positives += p
positives = 1 - max_min_norm(positives)
self.pr[f'cpc_{t}'][mode].update(seg, positives, length)
loss_key = "loss" if mode == "train" else f"{mode}_loss"
return OrderedDict({
loss_key: loss
})
def generic_eval_end(self, outputs, mode):
metrics = {}
data = self.hp.data
for k, v in self.stats.items():
metrics[f"train_{k}"] = self.stats[k]["train"].get_stats()
metrics[f"{mode}_{k}"] = self.stats[k][mode].get_stats()
epoch = self.current_epoch + 1
metrics['epoch'] = epoch
metrics['current_lr'] = self.opt.param_groups[0]['lr']
line()
for pred_type in self.pr.keys():
if mode == "val":
(precision, recall, f1, rval), (width, prominence, distance) = self.pr[pred_type][mode].get_stats()
if rval > self.best_rval[pred_type][mode][0]:
self.best_rval[pred_type][mode] = rval, self.current_epoch
self.peak_detection_params[pred_type]["width"] = width
self.peak_detection_params[pred_type]["prominence"] = prominence
self.peak_detection_params[pred_type]["distance"] = distance
self.peak_detection_params[pred_type]["epoch"] = self.current_epoch
print(f"saving for test - {pred_type} - {self.peak_detection_params[pred_type]}")
else:
print(f"using pre-defined peak detection values - {pred_type} - {self.peak_detection_params[pred_type]}")
(precision, recall, f1, rval), _ = self.pr[pred_type][mode].get_stats(
width=self.peak_detection_params[pred_type]["width"],
prominence=self.peak_detection_params[pred_type]["prominence"],
distance=self.peak_detection_params[pred_type]["distance"],
)
# test has only one epoch so set it as best
# this is to get the overall best pred_type later
self.best_rval[pred_type][mode] = rval, self.current_epoch
metrics[f'{data}_{mode}_{pred_type}_f1'] = f1
metrics[f'{data}_{mode}_{pred_type}_precision'] = precision
metrics[f'{data}_{mode}_{pred_type}_recall'] = recall
metrics[f'{data}_{mode}_{pred_type}_rval'] = rval
metrics[f"{data}_{mode}_{pred_type}_max_rval"] = self.best_rval[pred_type][mode][0]
metrics[f"{data}_{mode}_{pred_type}_max_rval_epoch"] = self.best_rval[pred_type][mode][1]
# get best rval from all rval types and all epochs
best_overall_rval = -float("inf")
for pred_type, rval in self.best_rval.items():
if rval[mode][0] > best_overall_rval:
best_overall_rval = rval[mode][0]
metrics[f'{mode}_max_rval'] = best_overall_rval
for k, v in metrics.items():
print(f"\t{k:<30} -- {v}")
line()
wandb.log(metrics)
output = OrderedDict({
'log': metrics
})
return output
def training_step(self, data_batch, batch_i):
return self.forward(data_batch, batch_i, 'train')
def validation_step(self, data_batch, batch_i):
return self.forward(data_batch, batch_i, 'val')
def test_step(self, data_batch, batch_i):
return self.forward(data_batch, batch_i, 'test')
def validation_end(self, outputs):
return self.generic_eval_end(outputs, 'val')
def test_end(self, outputs):
return self.generic_eval_end(outputs, 'test')
def configure_optimizers(self):
parameters = filter(lambda p: p.requires_grad, self.parameters())
if self.hp.optimizer == "sgd":
self.opt = optim.SGD(parameters, lr=self.hparams.lr, momentum=0.9, weight_decay=5e-4)
elif self.hp.optimizer == "adam":
self.opt = optim.Adam(parameters, lr=self.hparams.lr, weight_decay=5e-4)
elif self.hp.optimizer == "ranger":
self.opt = optim_extra.Ranger(parameters, lr=self.hparams.lr, alpha=0.5, k=6, N_sma_threshhold=5, betas=(.95, 0.999), eps=1e-5, weight_decay=0)
else:
raise Exception("unknown optimizer")
print(f"optimizer: {self.opt}")
line()
self.scheduler = optim.lr_scheduler.StepLR(self.opt,
step_size=self.hp.lr_anneal_step,
gamma=self.hp.lr_anneal_gamma)
return [self.opt]
def on_epoch_end(self):
self.scheduler.step()
def on_save_checkpoint(self, ckpt):
ckpt['peak_detection_params'] = dill.dumps(self.peak_detection_params)
def on_load_checkpoint(self, ckpt):
self.peak_detection_params = dill.loads(ckpt['peak_detection_params'])
def get_ckpt_path(self):
return glob.glob(self.hp.wd + "/*.ckpt")[0]