-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_CNN.py
executable file
·74 lines (64 loc) · 2.12 KB
/
train_CNN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
from torch.utils.data import DataLoader
from dataset_v2 import SEEDDataset
from CNN_model import CCNN
import pytorch_lightning as pl
num_train_recordings = 36
num_valid_recordings = 6
num_test_recordings = 3
window_length = 2000
batch_sz = 64
model_params = {
"input_ch": 4,
"grid_size": (9, 9),
"num_classes": 3,
"output_ch": 64,
"kernel_size": 4,
"hidden_size": 1024,
"dropout_prob": 0.5
}
training_params = {
"lr": 5e-4,
"betas": [0.9, 0.99],
"weight_decay": 1e-6,
"epochs": 20,
"lr_patience": 3
}
train_dataset = SEEDDataset(
path_to_preprocessed=f"../data/processed_data_grid/train_data_processed_win{window_length}_grid.h5",
split="train"
)
print("------------------------------------------------------------")
val_dataset = SEEDDataset(
path_to_preprocessed=f"../data/processed_data_grid/valid_data_processed_win{window_length}_grid.h5",
split="validation"
)
print("------------------------------------------------------------")
test_dataset = SEEDDataset(
path_to_preprocessed=f"../data/processed_data_grid/test_data_processed_win{window_length}_grid.h5",
split="test"
)
print("------------------------------------------------------------")
train_dataloader = DataLoader(train_dataset, batch_size=batch_sz, shuffle=True, num_workers=8)
val_dataloader = DataLoader(val_dataset, batch_size=batch_sz, shuffle=False, num_workers=8)
test_dataloader = DataLoader(test_dataset, batch_size=batch_sz, shuffle=False, num_workers=8)
eeg_net = CCNN(
model_parameters=model_params,
**training_params
)
best_checkpoint_callback = pl.callbacks.ModelCheckpoint(
save_top_k=1,
monitor="val_loss",
mode="min",
filename="best_checkpoint",
)
last_checkpoint_callback = pl.callbacks.ModelCheckpoint(
save_last=True,
filename="last_checkpoint_at_{epoch:02d}",
)
lr_monitor = pl.callbacks.LearningRateMonitor(logging_interval='epoch')
trainer = pl.Trainer(
accelerator="gpu",
max_epochs=training_params["epochs"],
callbacks=[best_checkpoint_callback, last_checkpoint_callback, lr_monitor]
)
trainer.fit(eeg_net, train_dataloader, val_dataloader)