-
Notifications
You must be signed in to change notification settings - Fork 3
STMTS_VPSolver
Filipe Brandão edited this page Jan 26, 2016
·
25 revisions
Usage: $VBP_FLOW[zvar_name]{W, w, b, bounds=None};
Description: generates arc-flow models with graph compression for vector packing instances.
Requirements: VPSolver
Parameters:
- AMPL:
-
zvar_name
: variable name for the amount of flow in the feedback arc (which corresponds to the number of bins used);
-
- Python:
-
W
: bin capacity; -
w
: item weights; -
b
: item demands (may include strings with variable names if the demand is not fixed); -
bounds
: maximum demand for each item.
-
Creates:
- AMPL:
- an arc-flow model with graph compression for the vector packing instance (variables and constraints);
- a variable
'zvar_name'
for the amount of flow in the feedback arc.
- Python:
- stores information for solution extraction.
Examples:
$EXEC{
from pyvpsolver import VBP
instance = VBP.from_file("data/instance.vbp")
};
$SET[I]{range(instance.m)};
$PARAM[b{^I}]{instance.b};
var x{I}, >= 0;
$VBP_FLOW[Z]{_instance1.W, _instance1.w, ["x[%d]"%i for i in range(instance.m)]};
minimize obj: Z;
s.t. demand{i in I}: x[i] >= instance1_b[i]; # demand constraints
solve;
end;
is replaced by:
var x{I}, >= 0;
/* arc-flow model with graph compression for instance.vbp */
/* Z is the amount of flow on the feedback arc */
/* x[i] = amount of flow on arcs associated with item i */
minimize obj: Z;
s.t. demand{i in I}: x[i] >= b[i]; # demand constraints
solve;
end;
Usage: $VBP_GRAPH[V_name, A_name]{W, w, labels, bounds=None};
Requirements: VPSolver
Description: generates compressed arc-flow graphs for vector packing instances.
Parameters:
- AMPL:
-
V_name
: name for the set of vertices; -
A_name
: name for the set of arcs.
-
- Python:
-
W
: bin capacity; -
w
: item weights; -
labels
: item labels ; -
bounds
: maximum demand for each item.
-
Creates:
- AMPL:
-
set 'V_name'
: set of vertices; -
set 'A_name'
: set of arcs.
-
- Python:
-
_sets['V_name']
: set of vertices; -
_sets['A_name']
: set of arcs;
-
Examples:
$EXEC{
from pyvpsolver import VBP
instance = VBP.from_file("data/instance.vbp")
};
$SET[I]{range(instance.m)};
$PARAM[b{^I}]{instance.b};
$VBP_GRAPH[V,A]{_instance1.W, _instance1.w, _sets['I']};
# Variables:
var Z, integer, >= 0; # amount of flow in the feedback arc
var f{A}, integer, >= 0; # amount of flow in each arc
# Objective:
maximize obj: f['T', 'S', 'LOSS'];
# Flow conservation constraints:
s.t. flowcon{k in V}:
sum{(u,v,i) in A: v == k} f[u,v,i] - sum{(u,v,i) in A: u == k} f[u, v, i] = 0;
# Demand constraints:
s.t. demand{k in I}: sum{(u,v,i) in A: i == k} >= b[i];
Note: the source vertex is 'S'
, the target is 'T'
, and loss arcs are labeled with 'LOSS'
.
Copyright © Filipe Brandão. All rights reserved.
E-mail: [email protected]. [Homepage]