-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmeasures.R
156 lines (137 loc) · 3.55 KB
/
measures.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
# Measures used as manipulation targets.
# NOTE: This file is only a library, see run.R for more details.
NP <- function(Dx, Dy, k = 9) {
if (any(Dx != t(Dx)) || any(Dy != t(Dy))) {
stop("Dx and Dy must be symmetric")
}
Dx <- as.matrix(Dx)
Dy <- as.matrix(Dy)
if (nrow(Dx) != nrow(Dy)) {
stop("Dx and Dy must have the same number of elements")
}
n <- nrow(Dx)
if (k >= n) {
stop("k must be smaller than the number of elements")
}
preservation <- vector("numeric", n)
for (i in 1:n) {
nx <- order(Dx[i, ])[1 + 1:k]
ny <- order(Dy[i, ])[1 + 1:k]
diff <- setdiff(nx, ny)
preservation[i] <- (k - length(diff)) / k
}
preservation
}
#silhouette <- function(Dy, labels) {
# if (any(t(Dy) != Dy)) {
# stop("Dy must be symmetric")
# }
#
# Dy <- as.matrix(Dy)
# n <- nrow(Dy)
# cohesion <- vector("numeric", n)
# separation <- vector("numeric", n)
#
# for (i in 1:n) {
# label <- labels[i]
# separation[i] <- min(Dy[i, labels != label])
# cohesion[i] <- mean(Dy[i, labels[-i] == label])
# }
#
# (separation - cohesion) / max(separation, cohesion)
#}
silhouette <- function(Dy, labels) {
n <- nrow(Dy)
if (n != length(labels)) {
stop("Number of labels doesn't match number of points")
}
A_labels <- list()
B_labels <- list()
unique.labels <- unique(labels)
for (l in unique.labels) {
A_labels[[l]] <- labels == l
B_labels[[l]] <- labels != l
}
# This factor excludes self comparisons when computing cohesion
m.factor <- n / (n-1)
s <- vector("numeric", n)
for (i in 1:n) {
label_i <- labels[i]
a <- m.factor * mean(Dy[i, A_labels[[label_i]]]) # cohesion
b <- Inf
for (l in unique(labels)) {
b <- min(mean(Dy[i, B_labels[[l]]]), b) # separation
}
s[i] <- (b - a) / max(b, a)
}
s
}
#stress <- function(Dx, Dy) {
# if (any(Dx != t(Dx)) || any(Dy != t(Dy))) {
# stop("Dx and Dy must be symmetric")
# }
#
# Dx <- as.matrix(Dx)
# Dy <- as.matrix(Dy)
# if (nrow(Dx) != nrow(Dy)) {
# stop("Dx and Dy must have the same number of elements")
# }
#
# n <- nrow(Dx)
# s <- vector("numeric", n)
# for (i in 1:n) {
# s[i] <- 0
# for (j in 1:n) {
# if (i == j) {
# next
# }
#
# s[i] = s[i] + (Dx[i, j] - Dy[i, j])^2 / Dx[i, j]
# }
# s[i] = s[i] / sum(D[i, ])
# }
#
# s
#}
stress <- function(Dx, Dy) {
n <- nrow(Dx)
C <- 0
D <- 0
for (i in 1:(n-1)) {
for (j in (i + 1):n) {
C <- C + Dx[i, j]
D <- D + (Dx[i, j] - Dy[i, j])^2 / Dx[i, j]
if (is.nan(D)) {
loginfo("%d, %d", i, j)
loginfo("%f", Dx[i, j])
stop("NaN")
}
}
}
D / C
}
# NOTE: This function requires the 'klmeasure' binary from:
# http://research.cs.aalto.fi/pml/software/dredviz/
smoothed.pr <- function(Dx, Dy, k) {
# Create SOM_PAK file for Dx
Dx.fname <- tempfile()
Dx.f <- file(Dx.fname, "w")
cat(sprintf("%d\n", ncol(Dx)), file=Dx.f)
write.table(Dx, Dx.f, col.names=F, row.names=F)
close(Dx.f)
# Create SOM_PAK file for Dy
Dy.fname <- tempfile()
Dy.f <- file(Dy.fname, "w")
cat(sprintf("%d\n", ncol(Dy)), file=Dy.f)
write.table(Dy, Dy.f, col.names=F, row.names=F)
close(Dy.f)
output <- system2("./klmeasure",
stdout=T,
args=c("--datadist", Dx.fname,
"--projdist", Dy.fname,
"--neighbors", sprintf("%d", k)))
output <- strsplit(output[2], " | ", fixed=T)
output <- unlist(output)
file.remove(Dx.fname, Dy.fname)
list(s.precision=as.double(output[1]), s.recall=as.double(output[2]))
}