-
Notifications
You must be signed in to change notification settings - Fork 33
/
matrix_functions.py
704 lines (576 loc) · 26.3 KB
/
matrix_functions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
"""
Copyright (c) Meta Platforms, Inc. and affiliates.
All rights reserved.
This source code is licensed under the BSD-style license found in the
LICENSE file in the root directory of this source tree.
"""
import enum
import logging
import math
import time
from dataclasses import asdict
from fractions import Fraction
from math import isfinite
import torch
from matrix_functions_types import (
CoupledHigherOrderConfig,
CoupledNewtonConfig,
DefaultEigenConfig,
DefaultEighEigenvectorConfig,
EigenConfig,
EigenvectorConfig,
EighEigenvectorConfig,
QRConfig,
RootInvConfig,
)
from torch import Tensor
logger: logging.Logger = logging.getLogger(__name__)
class NewtonConvergenceFlag(enum.Enum):
"""
Enum class for the state of the Newton / higher-order iteration method.
REACHED_MAX_ITERS: Reached maximum iteration count without meeting other exit criteria (rare, unexpected).
CONVERGED: Met the tolerance criterion (expected).
EARLY_STOP: Error in residual stopped improving (unexpected).
"""
REACHED_MAX_ITERS = 0
CONVERGED = 1
EARLY_STOP = 2
def check_diagonal(A: Tensor) -> bool:
"""Checks if symmetric matrix is diagonal. Throw if the input is not a square matrix."""
A_shape = A.shape
if len(A_shape) != 2:
raise ValueError(f"Matrix is not 2-dimensional! {A_shape=}")
if A_shape[0] != A_shape[1]:
raise ValueError(f"Matrix is not square! {A_shape=}")
# Check both upper triangular part and lower triangular part are all zeros.
return not A.triu(diagonal=1).any() and not A.tril(diagonal=-1).any()
def matrix_inverse_root(
A: Tensor,
root: Fraction,
root_inv_config: RootInvConfig = DefaultEigenConfig,
epsilon: float = 0.0,
is_diagonal: bool = False,
) -> Tensor:
"""Computes matrix root inverse of square symmetric positive definite matrix.
Args:
A (Tensor): Square matrix of interest.
root (Fraction): Root of interest. Any rational number.
root_inv_config (RootInvConfig): Configuration for root inverse computation. (Default: DefaultEigenConfig)
epsilon (float): Adds epsilon * I to matrix before taking matrix root. (Default: 0.0)
is_diagonal (bool): Flag for whether or not matrix is diagonal. If so, will compute root inverse by computing
root inverse of diagonal entries. (Default: False)
Returns:
X (Tensor): Inverse root of matrix A.
"""
# check if matrix is scalar
if torch.numel(A) == 1:
return (A + epsilon) ** torch.as_tensor(-1.0 / root)
# check matrix shape
if len(A.shape) != 2:
raise ValueError("Matrix is not 2-dimensional!")
elif A.shape[0] != A.shape[1]:
raise ValueError("Matrix is not square!")
if is_diagonal:
X = _matrix_inverse_root_diagonal(
A=A,
root=root,
epsilon=epsilon,
)
elif type(root_inv_config) is EigenConfig:
X, _, _ = _matrix_inverse_root_eigen(
A=A,
root=root,
epsilon=epsilon,
make_positive_semidefinite=root_inv_config.make_positive_semidefinite,
retry_double_precision=root_inv_config.retry_double_precision,
)
elif type(root_inv_config) is CoupledNewtonConfig:
# NOTE: Use Fraction.is_integer() instead when Python 3.12+ is available
if root.denominator != 1:
raise ValueError(
f"{root.denominator=} must be equal to 1 to use coupled inverse Newton iteration!"
)
X, _, termination_flag, _, _ = _matrix_inverse_root_newton(
A=A,
root=root.numerator,
epsilon=epsilon,
**asdict(root_inv_config),
)
if termination_flag == NewtonConvergenceFlag.REACHED_MAX_ITERS:
logging.warning(
"Newton did not converge and reached maximum number of iterations!"
)
elif type(root_inv_config) is CoupledHigherOrderConfig:
X, _, termination_flag, _, _ = _matrix_inverse_root_higher_order(
A=A,
root=root,
abs_epsilon=epsilon,
**asdict(root_inv_config),
)
if termination_flag == NewtonConvergenceFlag.REACHED_MAX_ITERS:
logging.warning(
"Higher order method did not converge and reached maximum number of iterations!"
)
else:
raise NotImplementedError(
f"Root inverse config is not implemented! Specified root inverse config is {root_inv_config=}."
)
return X
def _matrix_inverse_root_diagonal(
A: Tensor,
root: Fraction,
epsilon: float = 0.0,
) -> Tensor:
"""Computes matrix inverse root for a diagonal matrix by taking inverse square root of diagonal entries.
Args:
A (Tensor): A diagonal matrix.
root (Fraction): Root of interest. Any rational number.
epsilon (float): Adds epsilon * I to matrix before taking matrix root. (Default: 0.0)
Returns:
X (Tensor): Inverse root of diagonal entries.
"""
# check if root is positive integer
if root <= 0:
raise ValueError(f"Root {root} should be positive!")
return torch.diag((torch.diagonal(A) + epsilon).pow(torch.as_tensor(-1.0 / root)))
def matrix_eigenvalue_decomposition(
A: Tensor,
retry_double_precision: bool = True,
) -> tuple[Tensor, Tensor]:
"""
Compute the eigendecomposition of a symmetric matrix.
Args:
A (Tensor): The input symmetric matrix.
retry_double_precision (bool, optional): Whether to retry the computation in double precision if it fails in the current precision. Defaults to True.
Returns:
tuple[Tensor, Tensor]: A tuple containing the eigenvalues and eigenvectors of the input matrix.
"""
try:
# Attempt to compute the eigendecomposition in the current precision
L, Q = torch.linalg.eigh(A)
except Exception as exception:
# If the computation fails and retry_double_precision is True, retry in double precision
if retry_double_precision and A.dtype != torch.float64:
logger.warning(
f"Failed to compute eigendecomposition in {A.dtype} precision with exception {exception}! Retrying in double precision..."
)
L, Q = torch.linalg.eigh(A.double())
else:
# If retry_double_precision is False or the computation fails in double precision, raise the exception
raise exception
return L, Q
def _matrix_inverse_root_eigen(
A: Tensor,
root: Fraction,
epsilon: float = 0.0,
make_positive_semidefinite: bool = True,
retry_double_precision: bool = True,
) -> tuple[Tensor, Tensor, Tensor]:
"""Compute matrix inverse root using eigendecomposition of symmetric positive (semi-)definite matrix.
A^{-1/r} = Q L^{-1/r} Q^T
Assumes matrix A is symmetric.
Args:
A (Tensor): Square matrix of interest.
root (Fraction): Root of interest. Any rational number.
epsilon (float): Adds epsilon * I to matrix before taking matrix root. (Default: 0.0)
make_positive_semidefinite (bool): Perturbs matrix eigenvalues to ensure it is numerically positive semi-definite. (Default: True)
retry_double_precision (bool): Flag for re-trying eigendecomposition with higher precision if lower precision fails due
to CuSOLVER failure. (Default: True)
Returns:
X (Tensor): (Inverse) root of matrix. Same dimensions as A.
L (Tensor): Eigenvalues of A.
Q (Tensor): Orthogonal matrix consisting of eigenvectors of A.
"""
# check if root is positive integer
if root <= 0:
raise ValueError(f"Root {root} should be positive!")
# compute eigendecomposition and compute minimum eigenvalue
L, Q = matrix_eigenvalue_decomposition(
A, retry_double_precision=retry_double_precision
)
lambda_min = torch.min(L)
# make eigenvalues >= 0 (if necessary)
if make_positive_semidefinite:
L += -torch.minimum(lambda_min, torch.as_tensor(0.0))
# add epsilon
L += epsilon
# compute inverse preconditioner
X = Q * L.pow(torch.as_tensor(-1.0 / root)).unsqueeze(0) @ Q.T
return X, L, Q
def _matrix_inverse_root_newton(
A: Tensor,
root: int,
epsilon: float = 0.0,
max_iterations: int = 100,
tolerance: float = 1e-6,
) -> tuple[Tensor, Tensor, NewtonConvergenceFlag, int, Tensor]:
"""Compute matrix inverse root using coupled inverse Newton iteration.
alpha <- -1 / p
X <- 1/c * I
M <- 1/c^p * A
repeat until convergence
M' <- (1 - alpha) * I + alpha * M
X <- X * M'
M <- M'^p * M
where c = (2 |A|_F / (p + 1))^{1/p}. This ensures that |A|_2 <= |A|_F < (p + 1) c^p, which guarantees convergence.
We will instead use z = (p + 1) / (2 * |A|_F).
NOTE: Exponent multiplier not compatible with coupled inverse Newton iteration!
Args:
A (Tensor): Matrix of interest.
root (int): Root of interest. Any natural number.
epsilon (float): Adds epsilon * I to matrix before taking matrix root. (Default: 0.0)
max_iterations (int): Maximum number of iterations. (Default: 1000)
tolerance (float): Tolerance. (Default: 1e-6)
Returns:
A_root (Tensor): Inverse square root of matrix.
M (Tensor): Coupled matrix.
termination_flag (NewtonConvergenceFlag): Specifies convergence.
iteration (int): Number of iterations.
error (Tensor): Final error between M and I.
"""
# initialize iteration, dimension, and alpha
iteration = 0
dim = A.shape[0]
alpha = -1 / root
identity = torch.eye(dim, dtype=A.dtype, device=A.device)
# add regularization
A_ridge = A.add(identity, alpha=epsilon)
# initialize matrices
A_nrm = torch.linalg.norm(A_ridge)
z = (root + 1) / (2 * A_nrm)
X = z ** (-alpha) * identity
M = z * A_ridge
error = torch.dist(M, identity, p=torch.inf)
# main for loop
while error > tolerance and iteration < max_iterations:
iteration += 1
M_p = M.mul(alpha).add_(identity, alpha=(1 - alpha))
X = X @ M_p
M = torch.linalg.matrix_power(M_p, root) @ M
error = torch.dist(M, identity, p=torch.inf)
# determine convergence flag
termination_flag = (
NewtonConvergenceFlag.CONVERGED
if error <= tolerance
else NewtonConvergenceFlag.REACHED_MAX_ITERS
)
return X, M, termination_flag, iteration, error
def _matrix_inverse_root_higher_order(
A: Tensor,
root: Fraction,
rel_epsilon: float = 0.0,
abs_epsilon: float = 0.0,
max_iterations: int = 100,
tolerance: float = 1e-20,
order: int = 3, # 2 represents Newton's method
disable_tf32: bool = True,
) -> tuple[Tensor, Tensor, NewtonConvergenceFlag, int, Tensor]:
"""Compute matrix inverse root using coupled iterations, similar to above but generalized to support higher order.
Rough sketch (at order = 2, i.e., Newton)
alpha <- -1 / p
X <- 1/c * I
M <- 1/c^p * A
repeat until convergence
M' <- (1 - alpha) * I + alpha * M
X <- X * M'
M <- M'^p * M
where c = (k |A|_F / (p + 1))^{1/p}. This ensures that |A|_2 <= |A|_F < (p + 1) c^p, which guarantees convergence.
We will instead use z = (p + 1) / (k * |A|_F).
Here, k > 1, and typically lies in [1, 2]. It is picked internally in this method.
NOTE: Exponent multiplier not compatible with coupled iterations!
Args:
A (Tensor): Matrix of interest.
root (Fraction): Root of interest. Any rational number. Use small numerator, denominator for best numerics as well as performance.
rel_epsilon (float): Adds epsilon * lambda_max * I to matrix before taking matrix root, where lambda_max is an upper bound on maximum eigenvalue.
abs_epsilon (float): Adds epsilon * I to matrix before taking matrix root. When both "abs_epsilon" and "rel_epsilon" are specified, max(rel_epsilon * lambda_max, abs_epsilon) * I is added to the matrix.
Generally recommend setting according to A.dtype (1e-3 for tf32, 1e-5 for fp32, 1e-9 for fp64) (Default: 0.0)
max_iterations (int): Maximum number of iterations. Typically we need < 20 iterations. (Default: 100)
tolerance (float): Tolerance for determining exit criterion from iterations. (Default: 1e-20, which in practice guarantees they run to convergence)
order (int): Order of the method. Order must be >= 2. Higher order methods accelerate convergence (fewer iterations), but can take more matmuls per iteration. (Default: 3)
disable_tf32 (bool): Whether to disable tf32 matmuls or not internally. Highly recommend keeping True, since tf32 is challenging numerically here. (Default: True)
Returns:
A_root (Tensor): Inverse root of matrix (A^{-1/root})
M (Tensor): Coupled matrix.
termination_flag (NewtonConvergenceFlag): Specifies convergence.
iteration (int): Number of iterations.
error (Tensor): Final error, measured as |A * A_root^(p/q) - I|_Inf, where root = -q/p.
Exceptions:
Method throws an ArithmeticError if the computed result is inaccurate, i.e., error > 1e-1 or if there is an internal error
"""
tf32_flag = torch.backends.cuda.matmul.allow_tf32
if disable_tf32:
torch.backends.cuda.matmul.allow_tf32 = False
logger.debug(
f"Using tf32 precision for fp32 matmul: {torch.backends.cuda.matmul.allow_tf32}"
)
try:
t_iter_begin = time.perf_counter()
p = root.numerator
q = root.denominator
dtype = A.dtype
if min(abs(p), abs(q)) >= 10:
logger.warning(
f"{abs(root.numerator)=} and {abs(root.denominator)=} are probably too big for best performance."
)
# develop the b coefficients array first (ref: Lakic's paper)
b = torch.zeros(order, dtype=A.dtype, device=A.device)
b[0] = 1
num = 1
denom = 1
for i in range(1, order):
num *= 1 + (i - 1) * p
denom *= i * p
b[i] = num / denom
# initialize iteration, dimension, and s
iteration = 0
n = A.shape[0]
s = -1 / p
# We add a diagonal term to condition the matrix better
# We follow the Google style conditioning (in spirit) and scale by an upper bound on the max eigenvalue
# NOTE: this is different from other parts of Shampoo for now
# Simply use the basic upper bound on the spectral radius of A via infinity norm (should not underflow)
# NOTE: One may wish to use a cheap (|A^4|_inf)**0.25 to get a tighter upper bound, but beware of fp32 underflow!
lambda_max_approx = torch.linalg.matrix_norm(A, torch.inf)
# We have not seen lambda_max being Inf in practice, however there is not a whole lot we can do in this pathological case and its good to bail early
if not isfinite(lambda_max_approx):
raise ArithmeticError(
"Input matrix has entries close to inf, exiting root inverse"
)
# Now scale and setup our variables
epsilon = max(rel_epsilon * lambda_max_approx, abs_epsilon)
identity = torch.eye(n, dtype=dtype, device=A.device)
A_ridge = torch.add(A, identity, alpha=epsilon)
lambda_max_approx += epsilon
# Figure out a constant that gives good starting location
# We stick to a conservative setting that gives very good accuracy
# For a ref, see https://github.com/google-research/google-research/blob/master/scalable_shampoo/pytorch/matrix_functions.py#L114
z = 1.0 / torch.trace(A_ridge).item()
X = (z ** (-s)) * identity
M = z * A_ridge
error = torch.linalg.vector_norm(M - identity, torch.inf)
t_iter_end = time.perf_counter()
logger.debug(
f"Iteration dur (s): {t_iter_end - t_iter_begin}, Error (|M-I|) at iteration {iteration}: {error.item()}"
)
# Do one iteration of basic Newton first. This is used to mathematically guarantee convergence of higher order method.
# TODO: we may be able to get rid of this with a more careful analysis of the convergence region
t_iter_begin = time.perf_counter()
M_p = M.mul(s).add_(identity, alpha=(1 - s))
X = X @ M_p
M = torch.linalg.matrix_power(M_p, p) @ M
error = torch.linalg.vector_norm(M - identity, torch.inf)
n_matmul = math.ceil(math.log2(p)) + 2
iteration += 1
t_iter_end = time.perf_counter()
logger.debug(
f"Iteration dur (s): {t_iter_end - t_iter_begin}, Error (|M-I|) at iteration {iteration}: {error.item()}"
)
# main while loop
while error > tolerance and iteration < max_iterations:
t_iter_begin = time.perf_counter()
iteration += 1
# create M_p via Horner's rule
base_matrix = identity - M
M_p = base_matrix.mul(b[order - 1]).add_(
identity, alpha=float(b[order - 2])
)
for i in reversed(range(order - 2)):
M_p = torch.addmm(identity, M_p, base_matrix, beta=float(b[i]))
# rest is same as Newton
X = X @ M_p
M = torch.linalg.matrix_power(M_p, p) @ M
new_error = torch.linalg.vector_norm(M - identity, torch.inf)
n_matmul += math.ceil(math.log2(p)) + order
# TODO: 1.2 is the value from the Google code, can be tuned
if new_error > error * 1.2 or (new_error == error and error < 1e-3):
logger.debug(
f"Coupled inverse Newton is stagnating or diverging based on comparing current error {new_error.item()} against last iteration's error {error.item()}."
f"(We assume divergence if the new error > 1.2 * previous error, and assume stagnation if they are equal.)"
)
termination_flag = NewtonConvergenceFlag.EARLY_STOP
break
error = new_error
t_iter_end = time.perf_counter()
logger.debug(
f"Iteration dur (s): {t_iter_end - t_iter_begin}, Error (|M-I|) at iteration {iteration}: {error.item()}"
)
else:
# determine convergence flag based on error and tolerance because the main while loop exited with False condition.
termination_flag = (
NewtonConvergenceFlag.REACHED_MAX_ITERS
if error > tolerance
else NewtonConvergenceFlag.CONVERGED
)
# compute a cheap error proxy
true_error = torch.linalg.vector_norm(
A_ridge @ torch.linalg.matrix_power(X, p) - identity, torch.inf
)
n_matmul += math.ceil(math.log2(p)) + 1
# If the error is too high, let us log and raise an exception for investigation. This should be relatively infrequent (if epsilon isn't too small)
if true_error > 1e-1:
raise ArithmeticError(
f"Error in matrix inverse root (before powering for fractions) {true_error} exceeds threshold 1e-1, raising an exception!"
)
# Now power the root to q
if q > 1:
X = torch.linalg.matrix_power(X, q)
n_matmul += math.ceil(math.log2(q))
logger.debug(f"Upper bound on maximum eigenvalue: {lambda_max_approx}")
logger.debug(f"Number of matmuls: {n_matmul}")
logger.debug(f"Number of iterations: {iteration}")
logger.debug(f"Error before powering: {true_error}")
logger.debug(f"Termination Flag: {termination_flag}")
# If we have inf/nan in our answer also raise an arithmetic exception.
# Usually, this is due to the powering to q > 1 which can blow up entries.
# We have not seen this yet for q = 1 in Shampoo.
if torch.isnan(X).any() or torch.isinf(X).any():
raise ArithmeticError(
"NaN/Inf in matrix inverse root (after powering for fractions), raising an exception!"
)
finally:
# Make sure we restore tf32 mode correctly before returning
if disable_tf32:
torch.backends.cuda.matmul.allow_tf32 = tf32_flag
return X, M, termination_flag, iteration, true_error
def compute_matrix_root_inverse_residuals(
A: Tensor,
X_hat: Tensor,
root: Fraction,
epsilon: float,
root_inv_config: RootInvConfig = DefaultEigenConfig,
) -> tuple[Tensor, Tensor]:
"""Compute residual of matrix root inverse for debugging purposes.
relative error = ||X - X_hat||_inf / ||X||_inf
relative residual = ||A X^r - I||_inf
Args:
A (Tensor): Matrix of interest.
X (Tensor): Computed matrix root inverse.
root (Fraction): Root of interest. Any rational number.
epsilon (float): Adds epsilon * I to matrix.
root_inv_config (RootInvConfig): Configuration for root inverse computation (only supports EigenConfig for now). (Default: DefaultEigenConfig)
Returns:
absolute_error (Tensor): absolute error of matrix root inverse
relative_error (Tensor): relative error of matrix root inverse
residual (Tensor): residual of matrix root inverse
"""
# only do root inverse residual computation for EigenConfig
assert (
type(root_inv_config) is EigenConfig
), f"Only EigenConfig is supported for compute_matrix_root_inverse_residuals; currently {root_inv_config=}."
# check shape of matrix
if len(A.shape) != 2:
raise ValueError("Matrix is not 2-dimensional!")
elif A.shape[0] != A.shape[1]:
raise ValueError("Matrix is not square!")
elif A.shape != X_hat.shape:
raise ValueError("Matrix shapes do not match!")
# compute error by comparing against double precision
X = matrix_inverse_root(
A.double(),
root,
root_inv_config=root_inv_config,
epsilon=epsilon,
)
relative_error = torch.dist(X, X_hat, p=torch.inf) / torch.norm(X, p=torch.inf)
# compute residual
X_invr, _, _ = _matrix_inverse_root_eigen(
X_hat.double(),
root=root,
epsilon=0.0,
make_positive_semidefinite=True,
)
A_reg = A.double() + epsilon * torch.eye(
A.shape[0], dtype=torch.float64, device=A.device
)
relative_residual = torch.dist(X_invr, A_reg, p=torch.inf) / torch.norm(
A_reg, p=torch.inf
)
return relative_error, relative_residual
def matrix_eigenvectors(
A: Tensor,
eigenvectors_estimate: Tensor | None = None,
eigenvector_computation_config: EigenvectorConfig = DefaultEighEigenvectorConfig,
is_diagonal: bool = False,
) -> Tensor:
"""Compute eigenvectors of matrix using eigendecomposition of symmetric positive (semi-)definite matrix.
A = Q L Q^T => Q
Assumes matrix A is symmetric.
Args:
A (Tensor): Square matrix of interest.
eigenvectors_estimate (Tensor | None): The current estimate of the eigenvectors of A.
(Default: None)
eigenvector_computation_config (EigenvectorConfig): Determines how eigenvectors are computed.
(Default: DefaultEighEigenvectorConfig)
is_diagonal (bool): Whether A is diagonal. (Default: False)
Returns:
Q (Tensor): Orthogonal matrix containing eigenvectors of A.
"""
# check if matrix is scalar
if torch.numel(A) == 1:
return torch.ones_like(A)
# check matrix shape
if len(A.shape) != 2:
raise ValueError("Matrix is not 2-dimensional!")
elif A.shape[0] != A.shape[1]:
raise ValueError("Matrix is not square!")
# return identity matrix if A is diagonal
if is_diagonal:
return torch.eye(
A.shape[0],
dtype=A.dtype,
device=A.device,
)
if type(eigenvector_computation_config) is EighEigenvectorConfig:
return matrix_eigenvalue_decomposition(
A,
retry_double_precision=eigenvector_computation_config.retry_double_precision,
)[1]
elif type(eigenvector_computation_config) is QRConfig:
assert (
eigenvectors_estimate is not None
), "Estimate of eigenvectors is required when using QRConfig."
return _compute_orthogonal_iterations(
A,
eigenvectors_estimate=eigenvectors_estimate,
max_iterations=eigenvector_computation_config.max_iterations,
tolerance=eigenvector_computation_config.tolerance,
)
else:
raise NotImplementedError(
f"Eigenvector computation method is not implemented! Specified eigenvector method is {eigenvector_computation_config=}."
)
def _compute_orthogonal_iterations(
A: Tensor,
eigenvectors_estimate: Tensor,
max_iterations: int = 1,
tolerance: float = 1e-5,
) -> Tensor:
"""
Approximately compute the eigenvectors of a symmetric matrix by performing orthogonal/simultaneous iterations (QR algorithm).
Given an initial estimate of the eigenvectors Q of matrix A, a power iteration and a QR decomposition is performed each iteration, i.e. Q, _ <- QR(A @ Q).
When the initial estimate is the zero matrix, the eigenvectors are computed using an eigendecomposition.
Used in https://arxiv.org/abs/2405.18144 (see Appendix B) and https://arxiv.org/abs/2409.11321.
Args:
A (Tensor): The symmetric input matrix.
eigenvectors_estimate (Tensor): The current estimate of the eigenvectors of A.
max_iterations (int): The maximum number of iterations to perform. (Default: 1)
tolerance (float): The tolerance for determining convergence in terms of the relative change of the eigenvectors estimate.
(Default: 1e-5)
Returns:
Tensor: The approximate eigenvectors of the input matrix A.
"""
if not eigenvectors_estimate.any():
return matrix_eigenvalue_decomposition(A)[1]
# Perform orthogonal/simultaneous iterations (QR algorithm).
Q = eigenvectors_estimate
iteration = 0
error = torch.inf
while iteration < max_iterations and error > tolerance:
power_iteration = A @ Q
last_Q, Q = Q, torch.linalg.qr(power_iteration).Q
iteration += 1
error = last_Q.sub(Q).norm().div_(last_Q.norm())
# Ensure consistent ordering of estimated eigenvectors.
estimated_eigenvalues = torch.einsum("ij, ik, kj -> j", Q, A, Q)
Q = Q[:, estimated_eigenvalues.argsort()]
return Q