This repository has been archived by the owner on Oct 31, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 226
/
Copy pathtrain.py
244 lines (205 loc) · 8.19 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
#!/usr/bin/env python3 -u
# Copyright (c) 2017-present, Facebook, Inc.
# All rights reserved.
#
# This source code is licensed under the license found in the LICENSE file in
# the root directory of this source tree.
from __future__ import print_function
import argparse
import csv
import os
import numpy as np
import torch
from torch.autograd import Variable
import torch.backends.cudnn as cudnn
import torch.nn as nn
import torch.optim as optim
import torchvision.transforms as transforms
import torchvision.datasets as datasets
import models
from utils import progress_bar
parser = argparse.ArgumentParser(description='PyTorch CIFAR10 Training')
parser.add_argument('--lr', default=0.1, type=float, help='learning rate')
parser.add_argument('--resume', '-r', action='store_true',
help='resume from checkpoint')
parser.add_argument('--model', default="ResNet18", type=str,
help='model type (default: ResNet18)')
parser.add_argument('--name', default='0', type=str, help='name of run')
parser.add_argument('--seed', default=0, type=int, help='random seed')
parser.add_argument('--batch-size', default=128, type=int, help='batch size')
parser.add_argument('--epoch', default=200, type=int,
help='total epochs to run')
parser.add_argument('--no-augment', dest='augment', action='store_false',
help='use standard augmentation (default: True)')
parser.add_argument('--decay', default=1e-4, type=float, help='weight decay')
parser.add_argument('--alpha', default=1., type=float,
help='mixup interpolation coefficient (default: 1)')
args = parser.parse_args()
use_cuda = torch.cuda.is_available()
best_acc = 0 # best test accuracy
start_epoch = 0 # start from epoch 0 or last checkpoint epoch
if args.seed != 0:
torch.manual_seed(args.seed)
# Data
print('==> Preparing data..')
if args.augment:
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465),
(0.2023, 0.1994, 0.2010)),
])
else:
transform_train = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465),
(0.2023, 0.1994, 0.2010)),
])
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
trainset = datasets.CIFAR10(root='~/data', train=True, download=False,
transform=transform_train)
trainloader = torch.utils.data.DataLoader(trainset,
batch_size=args.batch_size,
shuffle=True, num_workers=8)
testset = datasets.CIFAR10(root='~/data', train=False, download=False,
transform=transform_test)
testloader = torch.utils.data.DataLoader(testset, batch_size=100,
shuffle=False, num_workers=8)
# Model
if args.resume:
# Load checkpoint.
print('==> Resuming from checkpoint..')
assert os.path.isdir('checkpoint'), 'Error: no checkpoint directory found!'
checkpoint = torch.load('./checkpoint/ckpt.t7' + args.name + '_'
+ str(args.seed))
net = checkpoint['net']
best_acc = checkpoint['acc']
start_epoch = checkpoint['epoch'] + 1
rng_state = checkpoint['rng_state']
torch.set_rng_state(rng_state)
else:
print('==> Building model..')
net = models.__dict__[args.model]()
if not os.path.isdir('results'):
os.mkdir('results')
logname = ('results/log_' + net.__class__.__name__ + '_' + args.name + '_'
+ str(args.seed) + '.csv')
if use_cuda:
net.cuda()
net = torch.nn.DataParallel(net)
print(torch.cuda.device_count())
cudnn.benchmark = True
print('Using CUDA..')
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=args.lr, momentum=0.9,
weight_decay=args.decay)
def mixup_data(x, y, alpha=1.0, use_cuda=True):
'''Returns mixed inputs, pairs of targets, and lambda'''
if alpha > 0:
lam = np.random.beta(alpha, alpha)
else:
lam = 1
batch_size = x.size()[0]
if use_cuda:
index = torch.randperm(batch_size).cuda()
else:
index = torch.randperm(batch_size)
mixed_x = lam * x + (1 - lam) * x[index, :]
y_a, y_b = y, y[index]
return mixed_x, y_a, y_b, lam
def mixup_criterion(criterion, pred, y_a, y_b, lam):
return lam * criterion(pred, y_a) + (1 - lam) * criterion(pred, y_b)
def train(epoch):
print('\nEpoch: %d' % epoch)
net.train()
train_loss = 0
reg_loss = 0
correct = 0
total = 0
for batch_idx, (inputs, targets) in enumerate(trainloader):
if use_cuda:
inputs, targets = inputs.cuda(), targets.cuda()
inputs, targets_a, targets_b, lam = mixup_data(inputs, targets,
args.alpha, use_cuda)
inputs, targets_a, targets_b = map(Variable, (inputs,
targets_a, targets_b))
outputs = net(inputs)
loss = mixup_criterion(criterion, outputs, targets_a, targets_b, lam)
train_loss += loss.data[0]
_, predicted = torch.max(outputs.data, 1)
total += targets.size(0)
correct += (lam * predicted.eq(targets_a.data).cpu().sum().float()
+ (1 - lam) * predicted.eq(targets_b.data).cpu().sum().float())
optimizer.zero_grad()
loss.backward()
optimizer.step()
progress_bar(batch_idx, len(trainloader),
'Loss: %.3f | Reg: %.5f | Acc: %.3f%% (%d/%d)'
% (train_loss/(batch_idx+1), reg_loss/(batch_idx+1),
100.*correct/total, correct, total))
return (train_loss/batch_idx, reg_loss/batch_idx, 100.*correct/total)
def test(epoch):
global best_acc
net.eval()
test_loss = 0
correct = 0
total = 0
for batch_idx, (inputs, targets) in enumerate(testloader):
if use_cuda:
inputs, targets = inputs.cuda(), targets.cuda()
inputs, targets = Variable(inputs, volatile=True), Variable(targets)
outputs = net(inputs)
loss = criterion(outputs, targets)
test_loss += loss.data[0]
_, predicted = torch.max(outputs.data, 1)
total += targets.size(0)
correct += predicted.eq(targets.data).cpu().sum()
progress_bar(batch_idx, len(testloader),
'Loss: %.3f | Acc: %.3f%% (%d/%d)'
% (test_loss/(batch_idx+1), 100.*correct/total,
correct, total))
acc = 100.*correct/total
if epoch == start_epoch + args.epoch - 1 or acc > best_acc:
checkpoint(acc, epoch)
if acc > best_acc:
best_acc = acc
return (test_loss/batch_idx, 100.*correct/total)
def checkpoint(acc, epoch):
# Save checkpoint.
print('Saving..')
state = {
'net': net,
'acc': acc,
'epoch': epoch,
'rng_state': torch.get_rng_state()
}
if not os.path.isdir('checkpoint'):
os.mkdir('checkpoint')
torch.save(state, './checkpoint/ckpt.t7' + args.name + '_'
+ str(args.seed))
def adjust_learning_rate(optimizer, epoch):
"""decrease the learning rate at 100 and 150 epoch"""
lr = args.lr
if epoch >= 100:
lr /= 10
if epoch >= 150:
lr /= 10
for param_group in optimizer.param_groups:
param_group['lr'] = lr
if not os.path.exists(logname):
with open(logname, 'w') as logfile:
logwriter = csv.writer(logfile, delimiter=',')
logwriter.writerow(['epoch', 'train loss', 'reg loss', 'train acc',
'test loss', 'test acc'])
for epoch in range(start_epoch, args.epoch):
train_loss, reg_loss, train_acc = train(epoch)
test_loss, test_acc = test(epoch)
adjust_learning_rate(optimizer, epoch)
with open(logname, 'a') as logfile:
logwriter = csv.writer(logfile, delimiter=',')
logwriter.writerow([epoch, train_loss, reg_loss, train_acc, test_loss,
test_acc])