This repository has been archived by the owner on Oct 31, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 69
/
Copy pathmatching_network.py
309 lines (232 loc) · 10.1 KB
/
matching_network.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
# Copyright 2017-present, Facebook, Inc.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
#
# This file implements the method described in:
# Vinyals, Oriol, et al. "Matching networks for one shot learning." Advances in Neural Information Processing Systems. 2016.
import torch
import torch.nn as nn
from torch.autograd import Variable
import numpy as np
import h5py
import argparse
import json
import os
class FullyContextualEmbedding(nn.Module):
def __init__(self, feat_dim, K):
super(FullyContextualEmbedding, self).__init__()
self.lstmcell = nn.LSTMCell(feat_dim*2, feat_dim)
self.softmax = nn.Softmax()
self.c_0 = Variable(torch.zeros(1,feat_dim))
self.feat_dim = feat_dim
self.K = K
def forward(self, f, G):
h = f
c = self.c_0.expand_as(f)
G_T = G.transpose(0,1)
for k in range(self.K):
logit_a = h.mm(G_T)
a = self.softmax(logit_a)
r = a.mm(G)
x = torch.cat((f, r),1)
h, c = self.lstmcell(x, (h, c))
h = h + f
return h
def cuda(self):
super(FullyContextualEmbedding, self).cuda()
self.c_0 = self.c_0.cuda()
return self
class MatchingNetwork(nn.Module):
def __init__(self, feat_dim, K):
super(MatchingNetwork, self).__init__()
self.FCE = FullyContextualEmbedding(feat_dim, K)
self.G_encoder = nn.LSTM(feat_dim, feat_dim, 1, batch_first=True, bidirectional=True)
self.softmax = nn.Softmax()
self.feat_dim = feat_dim
def encode_training_set(self, S):
out_G = self.G_encoder(S.unsqueeze(0))[0]
out_G = out_G.squeeze(0)
G = S + out_G[:,:S.size(1)] + out_G[:,S.size(1):]
G_norm = G.pow(2).sum(1).pow(0.5).expand_as(G)
G_normalized = G.div(G_norm + 0.00001)
return G, G_normalized
def get_logprobs(self, f, G, G_normalized, Y_S):
F = self.FCE(f, G)
scores = F.mm(G_normalized.transpose(0,1))
softmax = self.softmax(scores)
logprobs = softmax.mm(Y_S).log()
return logprobs
def forward(self, f, S, Y_S):
G, G_normalized = self.encode_training_set(S)
logprobs = self.get_logprobs(f, G, G_normalized, Y_S)
return logprobs
def cuda(self):
super(MatchingNetwork, self).cuda()
self.FCE = self.FCE.cuda()
return self
def train_matching_network(model, file_handle, base_classes, m=389, n=10, initlr=0.1, momentum=0.9, wd=0.001, step_after=20000, niter=60000):
model = model.cuda()
lr = initlr
optimizer = torch.optim.SGD(model.parameters(), lr, momentum=momentum, dampening=momentum, weight_decay = wd)
loss_fn = nn.NLLLoss()
all_labels = file_handle['all_labels'][...]
total_loss = 0.0
loss_count = 0.0
for it in range(niter):
optimizer.zero_grad()
rand_labels = np.random.choice(base_classes, m, replace=False)
num = np.random.choice(n, m)+1
batchsize = int(np.sum(num))
train_feats = torch.zeros(batchsize, model.feat_dim)
train_Y = torch.zeros(batchsize, m)
test_feats = torch.zeros(m, model.feat_dim)
test_labels = torch.range(0,m-1)
count=0
for j in range(m):
idx = np.where(all_labels==rand_labels[j])[0]
train_idx = np.sort(np.random.choice(idx, num[j], replace=False))
test_idx = np.random.choice(idx)
F_tmp = file_handle['all_feats'][list(train_idx)]
train_feats[count:count+num[j]] = torch.Tensor(F_tmp)
train_Y[count:count+num[j],j] = 1
F_tmp = file_handle['all_feats'][test_idx]
test_feats[j] = torch.Tensor(F_tmp)
count = count+num[j]
train_feats = Variable(train_feats.cuda())
train_Y = Variable(train_Y.cuda())
test_feats = Variable(test_feats.cuda())
test_labels = Variable(test_labels.long().cuda())
logprob = model(test_feats, train_feats, train_Y)
loss = loss_fn(logprob, test_labels)
loss.backward()
optimizer.step()
if (it+1) % step_after == 0:
lr = lr / 10
for param_group in optimizer.param_groups:
param_group['lr'] = lr
total_loss = total_loss + loss.data[0]
loss_count = loss_count + 1
if (it+1)%1 == 0:
print('{:d}:{:f}'.format(it, total_loss / loss_count))
total_loss = 0.0
loss_count = 0.0
return model
def encode_lowshot_trainset(model, base_classes, train_file_handle, novel_idx, lowshotn, num_base=100):
all_labels = train_file_handle['all_labels'][...]
all_feats = train_file_handle['all_feats']
feats = []
Y = []
#for each base class, randomly pick 100 examples
for i, k in enumerate(base_classes):
idx = np.where(all_labels==k)[0]
idx = np.sort(np.random.choice(idx, num_base, replace=False))
feats.append(all_feats[list(idx)])
Y_this = np.zeros((num_base,1000))
Y_this[:,k] = 1
Y.append(Y_this)
#next get the novel classes
sorted_novel_idx = np.sort(novel_idx.reshape(-1))
novel_feats = all_feats[list(sorted_novel_idx)]
novel_labels = all_labels[sorted_novel_idx]
Y_novel = np.zeros((novel_feats.shape[0],1000))
Y_novel[np.arange(novel_feats.shape[0]), novel_labels] = 1
num_repeats = int(np.ceil(float(num_base)/float(lowshotn)))
novel_feats = np.tile(novel_feats, (num_repeats,1))
Y_novel = np.tile(Y_novel, (num_repeats,1))
feats.append(novel_feats)
Y.append(Y_novel)
feats = np.concatenate(feats, axis=0)
Y = np.concatenate(Y, axis=0)
model = model.cuda()
feats = Variable(torch.Tensor(feats).cuda())
Y = Variable(torch.Tensor(Y).cuda())
G, G_norm = model.encode_training_set(feats)
print(novel_feats.shape, len(base_classes))
return G, G_norm, Y
def perelement_accuracy(scores, label_ind):
topk_scores, topk_labels = scores.topk(5, 1, True, True)
topk_ind = topk_labels.cpu().numpy()
top1_correct = topk_ind[:,0] == label_ind
top5_correct = np.sum(topk_ind == label_ind.reshape((-1,1)), axis=1)
return top1_correct.astype(float), top5_correct.astype(float)
def run_test(model, G, G_norm, Y, test_file_handle, base_classes, novel_classes, batchsize=128):
count = test_file_handle['count'][0]
all_feats = test_file_handle['all_feats']
all_labels = test_file_handle['all_labels'][:count]
top1 = None
top5 = None
for i in range(0, count, batchsize):
stop = min(i+batchsize, count)
F = all_feats[range(i,stop)]
F = Variable(torch.Tensor(F).cuda())
L = all_labels[i:stop]
scores = model.get_logprobs(F, G, G_norm, Y)
top1_this, top5_this = perelement_accuracy(scores.data, L)
top1 = top1_this if top1 is None else np.concatenate((top1, top1_this))
top5 = top5_this if top5 is None else np.concatenate((top5, top5_this))
is_novel = np.in1d(all_labels, novel_classes)
is_base = np.in1d(all_labels, base_classes)
is_either = is_novel | is_base
top1_novel = np.mean(top1[is_novel])
top1_base = np.mean(top1[is_base])
top1_all = np.mean(top1[is_either])
top5_novel = np.mean(top5[is_novel])
top5_base = np.mean(top5[is_base])
top5_all = np.mean(top5[is_either])
return np.array([top1_novel, top5_novel, top1_base, top5_base, top1_all, top5_all])
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--test', required=True, type=int)
parser.add_argument('--trainfile', required=True, type=str)
parser.add_argument('--testfile', type=str)
parser.add_argument('--lowshotmeta', required=True, type=str)
parser.add_argument('--experimentpath', type=str)
parser.add_argument('--experimentid', default=1, type=int)
parser.add_argument('--lowshotn', default=1, type=int)
parser.add_argument('--testsetup', default=0, type=int)
parser.add_argument('--modelfile', required=True, type=str)
parser.add_argument('--K', default=5, type = int)
parser.add_argument('--outdir', type=str)
return parser.parse_args()
if __name__ == '__main__':
params = parse_args()
with open(params.lowshotmeta, 'r') as f:
lowshotmeta = json.load(f)
if params.test:
with open(params.experimentpath.format(params.experimentid),'r') as f:
exp = json.load(f)
novel_idx = np.array(exp)[:,:params.lowshotn]
if params.testsetup:
novel_classes = lowshotmeta['novel_classes_2']
base_classes = lowshotmeta['base_classes_2']
else:
novel_classes = lowshotmeta['novel_classes_1']
base_classes = lowshotmeta['base_classes_1']
novel_idx = np.sort(novel_idx[novel_classes,:].reshape(-1))
train_f = h5py.File(params.trainfile,'r')
test_f = h5py.File(params.testfile,'r')
featdim = train_f['all_feats'][0].size
model = MatchingNetwork(featdim, params.K)
model = model.cuda()
tmp = torch.load(params.modelfile)
model.load_state_dict(tmp)
G, G_norm, Y = encode_lowshot_trainset(model, base_classes, train_f, novel_idx, params.lowshotn)
accs = run_test(model, G, G_norm, Y, test_f, base_classes, novel_classes)
modelrootdir = os.path.basename(os.path.dirname(params.trainfile))
outpath = os.path.join(params.outdir, 'MN_' + modelrootdir+'_expid_{:d}_lowshotn_{:d}.json'.format(
params.experimentid, params.lowshotn))
with open(outpath, 'w') as f:
json.dump(dict(expid=params.experimentid, lowshotn=params.lowshotn, accs=accs.tolist()),f)
train_f.close()
test_f.close()
else:
base_classes = lowshotmeta['base_classes_1']
base_classes.extend(lowshotmeta['base_classes_2'])
train_f = h5py.File(params.trainfile,'r')
featdim = train_f['all_feats'][0].size
model = MatchingNetwork(featdim, params.K)
model = model.cuda()
model = train_matching_network(model, train_f, base_classes)
torch.save(model.state_dict(), params.modelfile)