-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
117 lines (97 loc) · 4.6 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
import os
import streamlit as st
from dotenv import load_dotenv
from langchain.chains import create_history_aware_retriever, create_retrieval_chain
from langchain.chains.combine_documents import create_stuff_documents_chain
from langchain_chroma import Chroma
from langchain_community.chat_message_histories import ChatMessageHistory
from langchain_community.document_loaders import PyPDFLoader
from langchain_core.chat_history import BaseChatMessageHistory
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain_core.runnables.history import RunnableWithMessageHistory
from langchain_groq import ChatGroq
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_text_splitters import RecursiveCharacterTextSplitter
load_dotenv()
os.environ['HF_TOKEN'] = os.getenv("HF_TOKEN")
embeddings = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")
st.title("Conversational RAG With PDF uploads and chat history")
st.write("Upload PDF/s and chat with their content")
api_key = st.text_input("Enter your Groq API key:", type="password")
if api_key:
llm = ChatGroq(groq_api_key=api_key, model_name="Gemma2-9b-It")
session_id = st.text_input("Session ID", value="default_session")
if 'store' not in st.session_state:
st.session_state.store = {}
uploaded_files = st.file_uploader("Choose A PDf file", type="pdf", accept_multiple_files=True)
if uploaded_files:
documents = []
for uploaded_file in uploaded_files:
temp_pdf = f"./temporary.pdf"
with open(temp_pdf, "wb") as file:
file.write(uploaded_file.getvalue())
file_name = uploaded_file.name
loader = PyPDFLoader(temp_pdf)
docs = loader.load()
documents.extend(docs)
text_splitter = RecursiveCharacterTextSplitter(chunk_size=5000, chunk_overlap=500)
splits = text_splitter.split_documents(documents)
vectorstore = Chroma.from_documents(documents=splits, embedding=embeddings)
retriever = vectorstore.as_retriever()
contextualize_q_system_prompt = (
"Given a chat history and the latest user question"
"which might reference context in the chat history, "
"formulate a standalone question which can be understood "
"without the chat history. Do NOT answer the question, "
"just reformulate it if needed and otherwise return it as is."
)
contextualize_q_prompt = ChatPromptTemplate.from_messages(
[
("system", contextualize_q_system_prompt),
MessagesPlaceholder("chat_history"),
("human", "{input}"),
]
)
history_aware_retriever = create_history_aware_retriever(llm, retriever, contextualize_q_prompt)
system_prompt = (
"You are an assistant for question-answering tasks. "
"Use the following pieces of retrieved context to answer "
"the question. If you don't know the answer, say that you "
"don't know. Use three sentences maximum and keep the "
"answer concise."
"\n\n"
"{context}"
)
qa_prompt = ChatPromptTemplate.from_messages(
[
("system", system_prompt),
MessagesPlaceholder("chat_history"),
("human", "{input}"),
]
)
question_answer_chain = create_stuff_documents_chain(llm, qa_prompt)
rag_chain = create_retrieval_chain(history_aware_retriever, question_answer_chain)
def get_session_history(session: str) -> BaseChatMessageHistory:
if session_id not in st.session_state.store:
st.session_state.store[session_id] = ChatMessageHistory()
return st.session_state.store[session_id]
conversational_rag_chain = RunnableWithMessageHistory(
rag_chain, get_session_history,
input_messages_key="input",
history_messages_key="chat_history",
output_messages_key="answer"
)
user_input = st.text_input("Your question:")
if user_input:
session_history = get_session_history(session_id)
response = conversational_rag_chain.invoke(
{"input": user_input},
config={
"configurable": {"session_id": session_id}
},
)
st.write(st.session_state.store)
st.write("Assistant:", response['answer'])
st.write("Chat History:", session_history.messages)
else:
st.warning("Please enter the GRoq API Key")