-
Notifications
You must be signed in to change notification settings - Fork 0
/
new_milestones.py
374 lines (325 loc) · 10.7 KB
/
new_milestones.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
import pyxel
from math import sin, radians, sqrt
from random import uniform
screen_width = 720
screen_height = 480
convergence = (screen_width / 2, 200)
sky_height = screen_height / 2
class Game:
def __init__(self):
#initialisation des classes utiles pour le jeu
pyxel.init(screen_width, screen_height, "Retro-racing Game", 60)
pyxel.load("graphic.pyxres")
self.road = Road()
self.milestonel = Milestones(0)
self.milestoner = Milestones(720)
self.timeOfDay = TimeOfDay()
self.score = 0
self.player = Player(self)
self.enemy_timer = 0
self.enemies = Enemies(self.player)
pyxel.playm(0, loop=True)
pyxel.run(self.update, self.draw)
def init_score(self):
self.score = 0
def update(self):
self.score += 0.1
self.timeOfDay.update()
self.player.update()
self.enemies.update()
self.enemy_timer += 1
if self.enemy_timer >= 20:
self.enemies.create_enemy()
self.enemy_timer = 0
def draw(self):
pyxel.cls(pyxel.COLOR_LIME)
self.road.draw()
self.enemies.draw()
self.timeOfDay.draw()
self.milestonel.draw()
self.milestoner.draw()
self.player.draw()
pyxel.text(10, 10, f"Score: {int(self.score)}", pyxel.COLOR_WHITE)
class Road:
"""
Création du fond des décors, de la route et des voies
"""
def __init__(self):
self.overflowX = 200
self.line_thickness = 40
def createRoad(self):
#dessin de la route grise
pyxel.tri(
-self.overflowX,
screen_height,
screen_width + self.overflowX,
screen_height,
convergence[0],
convergence[1],
pyxel.COLOR_GRAY,
)
def outlineRoad(self):
#dessin des lines exterieures
for n in range(2):
for x in range(self.line_thickness):
pyxel.line(
(-self.overflowX if n else screen_width + self.overflowX),
screen_height + x,
convergence[0],
convergence[1],
pyxel.COLOR_WHITE,
)
def createLanes(self):
#dessin des lines interieures
for n in range(1, 3):
for x in range(self.line_thickness):
pyxel.line(
screen_width / 3 * n
+ ((self.line_thickness if n == 2 else -self.line_thickness)),
screen_height + x,
convergence[0],
convergence[1],
pyxel.COLOR_WHITE,
)
def draw(self):
self.createRoad()
self.outlineRoad()
self.createLanes()
class Enemies:
"""
Création des ennemis (obstacles à éviter) et gestion aléatoire de la direction
"""
def __init__(self, player, number=3):
self.player = player
self.enemies = []
self.scaling_factor = 0.05
def calculate_radius(self, y, initial_size):
#calcul de la taille
y -= convergence[1]
return self.scaling_factor * y + initial_size
def increase_speed(self, y, initial_speed):
#calcul de la vitesse
y -= convergence[1] - 1
return initial_speed * 2 ** (y / 60)
def create_enemy(self):
enemy = {
"x": convergence[0],
"y": convergence[1],
"trajectory": uniform(1.6, -1.6),
}
self.enemies.append(enemy)
def update(self):
#création des ennemis en nombre
for enemy in self.enemies:
enemy["y"] += self.increase_speed(enemy["y"], 1)
enemy["x"] += enemy["trajectory"] * self.increase_speed(enemy["y"], 1)
if enemy["y"] > screen_height + self.calculate_radius(enemy["y"], 8):
self.enemies.remove(enemy)
# Check collision with player
if self.check_collision(enemy):
self.player.onCollision()
def check_collision(self, enemy):
# Calculate the radius of the ball used in the collision detection
radius = self.calculate_radius(enemy["y"], 8)
# Calculate the dimensions of the player rectangle used in the collision detection
x = self.player.x + self.player.width * 0.3
y = self.player.y + self.player.height * 0.3
width = self.player.width * 0.4
height = self.player.height * 0.4
# Check if the ball collides with the player
return (
enemy["x"] + radius >= x
and enemy["x"] - radius <= x + width
and enemy["y"] + radius >= y
and enemy["y"] - radius <= y + height
)
def draw(self):
#affichage des balles
for enemy in self.enemies:
pyxel.circ(
enemy["x"],
enemy["y"],
self.calculate_radius(enemy["y"], 8),
pyxel.COLOR_WHITE,
)
class TimeOfDay:
"""
Création d'un cycle jour nuit continu
"""
def __init__(self, speed=0.5, day=True):
self.speed = speed
self.day = day
self.pos = [1, 100]
self.graphicsPositionY = 16
self.sky = sky_height - 50
def update(self):
#calcul des coordonnées de l'astre
self.pos[0] += self.speed
self.pos[1] = (
self.sky * sin(radians(-180 * self.pos[0] / screen_width)) + self.sky
)
if self.pos[0] > screen_width:
self.day = not self.day
self.pos[0] = 1
if self.day:
self.graphicsPositionY = 16
else:
self.graphicsPositionY = 80
def draw(self):
#affichage du ciel (foncé ou clair selon le jour)
pyxel.rect(
0,
0,
screen_width,
sky_height,
pyxel.COLOR_CYAN if self.day else pyxel.COLOR_NAVY,
)
#affichage depuis la ressource de l'astre dans le ciel
pyxel.blt(
self.pos[0],
self.pos[1],
0,
0,
self.graphicsPositionY,
60,
60,
pyxel.COLOR_BLACK,
)
class Milestones:
"""
Création et animation des bornes kilométriques le long des deux cotés de la route
La class prend en compte les coordonnées de départ pour calculer la trajectoire, la vitesse et la taille de l'objet
"""
def __init__(self, Xf):
"""
Initialisation de valeurs utiles pour les calculs et pour le développement
"""
self.Xo = screen_width // 2
self.Yo = 200
self.max_height = 64
self.Xg = 0
self.Yg = screen_height - 150
self.Xd = 720
self.Yd = screen_height - 150
self.l = self.Xd- self.Xg
self.sizes_coeff = 18
self.startx = self.Xo
self.starty = self.Yo
self.Xf = Xf
def update(self):
pass
def directions(self):
#valeurs réinitialisées lorsque l'ordonnée depasse 380px
if self.starty >= screen_height-100:
self.__init__(self.Xf)
self.coeff = (self.Yg-self.Yo)/(self.Xf-self.Xo)
#calcul de la taille selon la position
self.size = self.sizes_coeff*(abs(self.startx - self.Xo) / (screen_width/2))
#calculs de la trajectoire grâce à une equation de droite
self.starty += 7 * ((self.starty-199)/(screen_height-200))
self.startx = (self.starty-200)/self.coeff + self.Xo - (30)
def draw(self):
self.directions()
#affichage des plots lorsqu'ils arrive au niveau de l'horizon
if self.starty > 220:
pyxel.rect(
self.startx,
self.starty,
self.size,
self.size*4,
pyxel.COLOR_RED,
)
pyxel.rect(
self.startx,
self.starty + self.size * 0.45, #.45 ==> size delta Y / size
self.size,
self.size * 0.6,
pyxel.COLOR_WHITE,
)
class Player:
"""
Création du personnage, gestion de ses déplacements grâce aux touches de clavier
"""
def __init__(self, game):
self.game = game
self.width = 95
self.height = 150
self.player_speed = 10
self.wheel_size = (32, 15)
self.wheel_speed = 18 # the lower the faster and wheel_speed <= 18
self.x = screen_width // 2 - self.width // 2
self.y = screen_height - self.height
def update(self):
#déplacement selon les touches [Q]&[<-] à gauche
if (pyxel.btn(pyxel.KEY_LEFT) or pyxel.btn(pyxel.KEY_Q)) and self.x > 5:
self.x -= self.player_speed
#déplacement selon les touches [D]&[->] à droite
if (
pyxel.btn(pyxel.KEY_RIGHT) or pyxel.btn(pyxel.KEY_D)
) and self.x < screen_width - self.width - 5:
self.x += self.player_speed
def onCollision(self):
"""
gestion de l'evenement : collision du joueur avec une balle
-Un son est joué
-Le score est remis à zéro
"""
pyxel.play(2, 2)
self.game.init_score()
def draw(self):
"""
Affichage de la moto
puis animation du déplacement de la roue
"""
# motorcycle
pyxel.blt(
self.x,
self.y,
2,
16,
10,
self.width,
self.height,
pyxel.COLOR_PINK,
)
# first tire tread (top)
pyxel.blt(
self.x + self.wheel_size[0],
self.y
+ 86
+ 18
- 17 * (pyxel.frame_count % self.wheel_speed) / (self.wheel_speed - 1),
2,
48,
160,
self.wheel_size[0],
self.wheel_size[1],
)
# second tire tread (middle)
pyxel.blt(
self.x + self.wheel_size[0],
self.y
+ 86
+ 2 * 18
- 17 * (pyxel.frame_count % self.wheel_speed) / (self.wheel_speed - 1),
2,
48,
160,
self.wheel_size[0],
self.wheel_size[1],
)
# third tire tread (bottom)
if 17 * (pyxel.frame_count % self.wheel_speed) / (self.wheel_speed - 1) > 9:
pyxel.blt(
self.x + self.wheel_size[0],
self.y
+ 86
+ 3 * 18
- 17 * (pyxel.frame_count % self.wheel_speed) / (self.wheel_speed - 1),
2,
48,
160,
self.wheel_size[0],
self.wheel_size[1],
)
Game()