-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathget_data.m
191 lines (159 loc) · 6.92 KB
/
get_data.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
function [var_param, solver_param] = get_data(solver_name)
%GET_DATA Get the data for a (example) multi-objective optimization problem.
% [var_param, solver_param] = get_data(solver_name)
% var_param - struct with the variable description (struct)
% solver_param - struct with the solver data (struct)
%
% Solve an optimization problem with:
% - Multiple variables
% - Integer variables
% - Upper and lower bounds
% - Inequality constraints
% - Equality constraints
% - Non continuous objective function
% - Single-objective or multi-objective goals
%
% Use the followig strategies:
% - brute force grid search (mixed integer)
% - single-objective genetic algorithm (mixed integer)
% - multi-objective genetic algorithm (continuous variables)
%
% The problem solved in this example is trivial and not very interesting.
%
% See also RUN_OPTIM, GET_MULTI_OBJ_OPT, GET_PRE_PROC, GET_SOLUTION.
%
% (c) 2019-2020, ETH Zurich, Power Electronic Systems Laboratory, T. Guillod
switch solver_name
case 'bruteforce'
var_param = get_var_param('mixed_integer');
options = struct('ConstraintToleranceEq', 1e-3, 'ConstraintToleranceInEq', 1e-3);
solver_param = get_solver_param('single_objective', solver_name, options);
case 'ga'
var_param = get_var_param('mixed_integer');
options = optimoptions (@ga);
options = optimoptions(options, 'TolFun', 1e-6);
options = optimoptions(options, 'ConstraintTolerance', 1e-3);
options = optimoptions(options, 'Generations', 20);
options = optimoptions(options, 'PopulationSize', 2000);
solver_param = get_solver_param('single_objective', solver_name, options);
case 'gamultiobj'
var_param = get_var_param('continuous');
options = optimoptions(@gamultiobj);
options = optimoptions(options, 'TolFun', 1e-6);
options = optimoptions(options, 'ConstraintTolerance', 1e-3);
options = optimoptions(options, 'Generations', 20);
options = optimoptions(options, 'PopulationSize', 700);
solver_param = get_solver_param('multi_objective', solver_name, options);
otherwise
error('invalid solver_name')
end
end
function var_param = get_var_param(type)
%GET_VAR_PARAM Get the data for a (example) multi-objective optimization problem.
% var_param = GET_VAR_PARAM(type)
% type - type of the variables (string)
% 'mixed_integer' - problem with integer variable
% 'continuous' - problem without integer variable
% var_param - struct with the variable description (struct)
% variables list
var = {};
var{end+1} = struct('type', 'float', 'name', 'x_1', 'scale', 'lin', 'vec', linspace(0, 3, 25), 'lb', 0.0, 'ub', 3.0);
var{end+1} = struct('type', 'float', 'name', 'x_2', 'scale', 'log', 'vec', logspace(log10(1), log10(3), 25), 'lb', 1.0, 'ub', 3.0);
switch type
case 'mixed_integer'
var{end+1} = struct('type', 'integer', 'name', 'x_3','vec', [5 7 9], 'set', [5 7 9]);
case 'continuous'
var{end+1} = struct('type', 'scalar', 'name', 'x_3', 'v', 5);
otherwise
error('invalid type')
end
var{end+1} = struct('type', 'scalar', 'name', 'x_4', 'v', 2);
% assign
var_param.var = var; % cell of struct with the different variable description
var_param.n_max = 100e3; % maximum number of initial points for avoid out of memory crashes
var_param.fct_select = @(input, n_size) true(1, n_size); % check if the generated iniitial points should be included
end
function solver_param = get_solver_param(type, solver_name, options)
%GET_SOLVER_PARAM Get the data for a (example) multi-objective optimization problem.
% solver_param = GET_SOLVER_PARAM(type, solver_name, options)
% type - type of the problem (string)
% 'single_objective' - scalar valued ojective function
% 'multi_objective' - vector valued ojective function
% solver_name - name of the solver (string)
% options - options for the solver (GaOptions or GamultiobjOptions or struct)
% solver_param - struct with the solver data (struct)
solver_param.solver_name = solver_name; % name of the solver
solver_param.options = options; % options for the solver
solver_param.n_split = 500; % maximum number of solution evaluated in one vectorized call
solver_param.fct_output = @get_output; % compute the output struct from the input
solver_param.fct_con_c = @get_con_c; % compute the inequalities contraints from the input
solver_param.fct_con_ceq = @get_con_ceq; % compute the equalities contraints from the input
switch type
case 'single_objective'
solver_param.fct_obj = @get_obj_single; % compute the objective value from the input
case 'multi_objective'
solver_param.fct_obj = @get_obj_multi; % compute the objective value from the input
otherwise
error('invalid type')
end
end
function c = get_con_c(input, n_size)
%GET_CON_C Compute the inequalities contraints from the input.
% c = GET_CON_C(input, n_size)
% input - parsed and scaled input points (struct of arrays)
% n_size - number of points (integer)
% c - inequalities contraints, c<0 (matrix or empty)
[y_1, y_2] = get_raw(input);
c = [y_1-10 ; y_2-10];
end
function ceq = get_con_ceq(input, n_size)
%GET_CON_CEQ Compute the equalities contraints from the input.
% ceq = GET_CON_CEQ(input, n_size)
% input - parsed and scaled input points (struct of arrays)
% n_size - number of points (integer)
% ceq - equalities contraints, ceq==0 (matrix or empty)
ceq = [];
end
function fval = get_obj_single(input, n_size)
%GET_OBJ_SINGLE Compute the single-objective value from the input.
% fval = GET_OBJ_SINGLE(input, n_size)
% input - parsed and scaled input points (struct of arrays)
% n_size - number of points (integer)
% fval - objective function (array)
[y_1, y_2] = get_raw(input);
fval = y_1+y_2;
end
function fval = get_obj_multi(input, n_size)
%GET_OBJ_MULTI Compute the multi-objective values from the input.
% fval = GET_OBJ_MULTI(input, n_size)
% input - parsed and scaled input points (struct of arrays)
% n_size - number of points (integer)
% fval - objective function (matrix)
[y_1, y_2] = get_raw(input);
fval = [y_1 ; y_2];
end
function sol = get_output(input, n_size)
%GET_OBJ_OUTPUT Compute the output struct from the input.
% sol = GET_OBJ_OUTPUT(input, n_size)
% input - parsed and scaled input points (struct of arrays)
% n_size - number of points (integer)
% output - struct with the generated output (struct of arrays)
[y_1, y_2] = get_raw(input);
sol.y_1 = y_1;
sol.y_2 = y_2;
end
function [y_1, y_2] = get_raw(input)
%GET_RAW Mathematical description of the function to be optimized.
% [y_1, y_2] = GET_RAW(input)
% input - parsed and scaled input points (struct of arrays)
% y_1 - first output values (array)
% y_2 - second output values (array)
% assign
x_1 = input.x_1;
x_2 = input.x_2;
x_3 = input.x_3;
x_4 = input.x_4;
% compute
y_1 = x_1.^2+(x_2-2).^2+x_3;
y_2 = 0.5*((x_1-2).^2+(x_2+1).^2)+2+x_4;
end