diff --git a/Paper.tex b/Paper.tex index 1948eb98..903961ac 100644 --- a/Paper.tex +++ b/Paper.tex @@ -854,8 +854,8 @@ \subsection{Execution Overview} \end{eqnarray} \begin{equation} X\big( (\boldsymbol{\sigma}, \boldsymbol{\mu}, A, I) \big) \equiv \begin{cases} -\big(\varnothing, \boldsymbol{\mu}, A^0, I, ()\big) & \text{if} \quad Z(\boldsymbol{\sigma}, \boldsymbol{\mu}, I)\\ -O(\boldsymbol{\sigma}, \boldsymbol{\mu}, A, I) \cdot \mathbf{o} & \text{if} \quad \mathbf{o} \neq \varnothing\\ +\big(\varnothing, \boldsymbol{\mu}_g, A^0, I, ()\big) & \text{if} \quad Z(\boldsymbol{\sigma}, \boldsymbol{\mu}, I)\\ +O(\boldsymbol{\sigma}, \boldsymbol{\mu}, A, I) \boxplus \mathbf{o} & \text{if} \quad \mathbf{o} \neq \varnothing\\ X\big(O(\boldsymbol{\sigma}, \boldsymbol{\mu}, A, I)\big) & \text{otherwise}\\ \end{cases} \end{equation} @@ -863,7 +863,7 @@ \subsection{Execution Overview} where \begin{eqnarray} \mathbf{o} & \equiv & H(\boldsymbol{\mu}, I) \\ -(a, b, c) \cdot d & \equiv & (a, b, c, d) +(a, b, c, d) \boxplus e & \equiv & (a, b_g, c, d, e) \end{eqnarray} Note that we must drop the fourth value in the tuple returned by $X$ to correctly evaluate $\Xi$, hence the subscript $X_{0,1,2,4}$.