eformer (EasyDel Former) is a utility library designed to simplify and enhance the development of machine learning models using JAX. It provides a collection of tools for sharding, custom PyTrees, quantization, mixed precision training, and optimized operations, making it easier to build and scale models efficiently.
- Mixed Precision Training (
mpric
): Advanced mixed precision utilities supporting float8, float16, and bfloat16 with dynamic loss scaling. - Sharding Utilities (
escale
): Tools for efficient sharding and distributed computation in JAX. - Custom PyTrees (
jaximus
): Enhanced utilities for creating custom PyTrees andArrayValue
objects, updated from Equinox. - Custom Calling (
callib
): A tool for custom function calls and direct integration with Triton kernels in JAX. - Optimizer Factory: A flexible factory for creating and configuring optimizers like AdamW, Adafactor, Lion, and RMSProp.
- Custom Operations and Kernels:
- Flash Attention 2 for GPUs/TPUs (via Triton and Pallas).
- 8-bit and NF4 quantization for efficient model.
- Many others to be added.
- Quantization Support: Tools for 8-bit and NF4 quantization, enabling memory-efficient model deployment.
You can install eformer
via pip:
pip install eformer
from eformer.mpric import PrecisionHandler
# Create a handler with float8 compute precision
handler = PrecisionHandler(
policy="p=f32,c=f8_e4m3,o=f32", # params in f32, compute in float8, output in f32
use_dynamic_scale=True
)
import jax
from eformer.jaximus import ArrayValue, implicit
from eformer.ops.quantization.quantization_functions import (
dequantize_row_q8_0,
quantize_row_q8_0,
)
array = jax.random.normal(jax.random.key(0), (256, 64), "f2")
class Array8B(ArrayValue):
scale: jax.Array
weight: jax.Array
def __init__(self, array: jax.Array):
self.weight, self.scale = quantize_row_q8_0(array)
def materialize(self):
return dequantize_row_q8_0(self.weight, self.scale)
qarray = Array8B(array)
@jax.jit
@implicit
def sqrt(x):
return jax.numpy.sqrt(x)
print(sqrt(qarray))
print(qarray)
from eformer.optimizers import OptimizerFactory, SchedulerConfig, AdamWConfig
# Create an AdamW optimizer with a cosine scheduler
scheduler_config = SchedulerConfig(scheduler_type="cosine", learning_rate=1e-3, steps=1000)
optimizer, scheduler = OptimizerFactory.create("adamw", scheduler_config, AdamWConfig())
from eformer.quantization import Array8B, ArrayNF4
# Quantize an array to 8-bit
qarray = Array8B(jax.random.normal(jax.random.key(0), (256, 64), "f2"))
# Quantize an array to NF4
n4array = ArrayNF4(jax.random.normal(jax.random.key(0), (256, 64), "f2"), 64)
from eformer.mpric import Policy, LossScaleConfig
# Create a custom precision policy
policy = Policy(
param_dtype=jnp.float32,
compute_dtype=jnp.bfloat16,
output_dtype=jnp.float32
)
# Configure loss scaling
loss_config = LossScaleConfig(
initial_scale=2**15,
growth_interval=2000,
scale_factor=2,
min_scale=1.0
)
# Create handler with custom configuration
handler = PrecisionHandler(
policy=policy,
use_dynamic_scale=True,
loss_scale_config=loss_config
)
We welcome contributions! Please read our Contributing Guidelines to get started.
This project is licensed under the Apache License 2.0. See the LICENSE file for details.