hostname = 'sftp.telespazio.fr'
port = 22 # default SFTP port is 22
username = 'sen2cor3'
password = '4sen2like'
remote_path = '/upload/Sen2Cor-3.01.00/Documentation/'
Sen2cor 3.01.00 Software Release Note:
sftp://[email protected]/upload/Sen2Cor-3.01.00/Documentation/S2-SEN2LIKE-Sen2Cor_3.01.00-SRN_V1.1.pdf
Sen2cor 3.01.00 Software Configuration and User Manual:
sftp://[email protected]/upload/Sen2Cor-3.01.00/Documentation/S2-SEN2LIKE-Sen2Cor_3.01.00-SUM_V1.1.pdf
Either with a software like Filezilla:
hostname = 'sftp.telespazio.fr'
port = 22 # default SFTP port is 22
username = 'sen2cor3'
password = '4sen2like'
remote_path = '/upload/Sen2Cor-3.01.00/Software/sen2cor_3.1.0_python_3.10_20240313.zip'
e.g: sftp://[email protected]/upload/Sen2Cor-3.01.00/Software/sen2cor_3.1.0_python_3.10_20240313.zip
or with the example script "sen2cor3_download.py" based on "paramiko" module.
It requires paramiko version 3.4.0 that could be installed with conda see below:
conda activate sen2like
conda install paramiko=3.4.0 -c conda-forge
python sen2cor3_download.py sen2cor3_install_dir
e.g. sen2cor3_install_dir=/opt/sen2cor3/code/
cd $sen2cor3_install_dir
unzip sen2cor_3.1.0_python_3.10.zip
Sen2Cor3 relies on a set of external auxiliary data that needs to be available in Sen2Cor3 "aux_data" folder:
- ECMWF CAMS data: daily, monthly
- ESA CCI files
- Copernicus DEM files
Further details are available in Sen2Cor3 Software User Manual.
Examples of symbolic linking is given hereafter:
- symbolic linking of your local CAMS folder that contains daily CAMS data e.g. /data/CAMS/daily
- symbolic linking of your local ESA CCI files e.g. /data/AUX_DATA/
cd $sen2cor3_install_dir/sen2cor_3.1.0_python_3.10/SEN2COR_3/aux_data
ln -s /data/CAMS/daily ./ECMWF/daily
ln -s /data/AUX_DATA/ESACCI-LC-L4-Snow-Cond-500m-MONTHLY-2000-2012-v2.4 ./ESACCI-LC-L4-Snow-Cond-500m-MONTHLY-2000-2012-v2.4
ln -s /data/AUX_DATA/ESACCI-LC-L4-WB-Map-150m-P13Y-2000-v4.0.tif ./ESACCI-LC-L4-WB-Map-150m-P13Y-2000-v4.0.tif
ln -s /data/AUX_DATA/ESACCI-LC-L4-LCCS-Map-300m-P1Y-2015-v2.0.7.tif ./ESACCI-LC-L4-LCCS-Map-300m-P1Y-2015-v2.0.7.tif
https://repo.anaconda.com/miniconda/Miniconda3-py37_22.11.1-1-Linux-x86_64.sh
Once you retrieved the code, go into Sen2Cor3 root source folder and run the following command to create a conda env named sen2like:
cd $sen2cor3_install_dir/sen2cor_3.1.0_python_3.10
conda create -n sen2like --file requirements.txt -c conda-forge
Sen2Cor 3.1 uses the same conda environment as Sen2like:
conda activate sen2like
python $sen2cor3_install_dir/sen2cor_3.1.0_python_3.10/SEN2COR_3/L2A_Process.py --help
output:
usage: L2A_Process.py [-h] [--mode MODE] [--resolution {10,20,30,60}] [--datastrip DATASTRIP] [--tile TILE] [--output_dir OUTPUT_DIR] [--work_dir WORK_DIR]
[--img_database_dir IMG_DATABASE_DIR] [--res_database_dir RES_DATABASE_DIR] [--processing_centre PROCESSING_CENTRE] [--archiving_centre ARCHIVING_CENTRE]
[--processing_baseline PROCESSING_BASELINE] [--raw] [--tif] [--sc_only] [--sc_classic] [--sc_cog] [--cr_only] [--debug] [--GIP_L2A GIP_L2A]
[--GIP_L2A_SC GIP_L2A_SC] [--GIP_L2A_AC GIP_L2A_AC] [--GIP_L2A_PB GIP_L2A_PB] [--Hyper_MS]
input_dir
Sen2Cor. Version: 03.01.00, created: 2024.02.29, supporting Level-1C product version 14.2 - 14.9, supporting Level-1TP Collection_1-2 Landsat_8-9, supporting Hyper Level-1C - .
positional arguments:
input_dir Directory of Level-1C input
options:
-h, --help show this help message and exit
--mode MODE Mode: generate_datastrip, process_tile
--resolution {10,20,30,60}
Target resolution, can be 10, 20 or 60m for S2, 30m for Hyper. If omitted, only 20 and 10m resolutions will be processed
--datastrip DATASTRIP
Datastrip folder
--tile TILE Tile folder
--output_dir OUTPUT_DIR
Output directory
--work_dir WORK_DIR Work directory
--img_database_dir IMG_DATABASE_DIR
Database directory for L1C(H) input images
--res_database_dir RES_DATABASE_DIR
Database directory for results and temporary products
--processing_centre PROCESSING_CENTRE
Processing centre as regex: ^[A-Z_]{4}$, e.g "SGS_"
--archiving_centre ARCHIVING_CENTRE
Archiving centre as regex: ^[A-Z_]{4}$, e.g. "SGS_"
--processing_baseline PROCESSING_BASELINE
Processing baseline in the format: "dd.dd", where d=[0:9]
--raw Export raw images in rawl format with ENVI hdr
--tif Export raw images in TIFF format instead of JPEG-2000
--sc_only Performs only the scene classification at 60 or 20m resolution, 30m for Hyper
--sc_classic Performs scene classification in Sen2Cor 2.9 mode
--sc_cog Export SCL image in COG format instead of JPEG_2000
--cr_only Performs only the creation of the L2A product tree, no processing
--debug Performs in debug mode
--GIP_L2A GIP_L2A Select the user GIPP
--GIP_L2A_SC GIP_L2A_SC
Select the scene classification GIPP
--GIP_L2A_AC GIP_L2A_AC
Select the atmospheric correction GIPP
--GIP_L2A_PB GIP_L2A_PB
Select the processing baseline GIPP
--Hyper_MS To Process a Hyper_MS product