Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions mteb/models/overview.py
Original file line number Diff line number Diff line change
Expand Up @@ -72,6 +72,7 @@
ru_sentence_models,
salesforce_models,
searchmap_models,
seed_models,
sentence_transformers_models,
shuu_model,
siglip_models,
Expand Down Expand Up @@ -163,6 +164,7 @@
ara_models,
b1ade_models,
nb_sbert,
seed_models,
]
MODEL_REGISTRY = {}

Expand Down
167 changes: 167 additions & 0 deletions mteb/models/seed_models.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,167 @@
from __future__ import annotations

import logging
import os
import time
from functools import partial
from typing import Any

import numpy as np
import tqdm

from mteb.encoder_interface import PromptType
from mteb.model_meta import ModelMeta
from mteb.models.wrapper import Wrapper
from mteb.requires_package import requires_package

logger = logging.getLogger(__name__)


class SeedTextEmbeddingModel(Wrapper):
def __init__(
self,
model_name: str,
rate_limit_per_minute: int = 300,
**kwargs,
) -> None:
requires_package(
self,
"openai",
model_name,
install_instruction="pip install 'mteb[openai]'",
)
from openai import OpenAI

requires_package(
self,
"tiktoken",
model_name,
install_instruction="pip install 'mteb[openai]'",
)
import tiktoken

self.model_name = model_name
self.rate_limit_per_minute = rate_limit_per_minute
self.last_request_time = 0
self.tokenizer = tiktoken.get_encoding("cl100k_base")
self.client = OpenAI(
api_key=os.environ["ARK_API_KEY"],
base_url="https://ark.cn-beijing.volces.com/api/v3",
)

def _enforce_rate_limit(self):
"""Enforce rate limiting"""
current_time = time.time()
time_since_last_request = current_time - self.last_request_time
min_interval = 60.0 / self.rate_limit_per_minute

if time_since_last_request < min_interval:
time.sleep(min_interval - time_since_last_request)

self.last_request_time = time.time()

def _truncate_text(self, text: str, max_tokens: int = 32000) -> str:
"""Truncate text to fit within token limit"""
tokens = self.tokenizer.encode(text)
if len(tokens) > max_tokens:
tokens = tokens[:max_tokens]
text = self.tokenizer.decode(tokens)
return text

def _format_instruction(self, instruction: str, input_: str) -> str:
if isinstance(instruction, dict):
return input_
elif isinstance(instruction, str) and len(instruction):
return instruction + "\n" + input_
else:
return input_

def _embed(
self,
sentences: list[str],
instruction: str,
show_progress_bar: bool = False,
retries: int = 5,
) -> np.ndarray:
max_batch_size = 20
batches = [
sentences[i : i + max_batch_size]
for i in range(0, len(sentences), max_batch_size)
]

all_embeddings = []

for batch in tqdm.tqdm(batches, leave=False, disable=not show_progress_bar):
# Truncate texts
batch = [self._truncate_text(text) for text in batch]

# Add instruction to each text
batch = [self._format_instruction(instruction, text) for text in batch]

while retries > 0:
try:
self._enforce_rate_limit()
response = self.client.embeddings.create(
model=self.model_name, input=batch, encoding_format="float"
)
embeddings = [x.embedding for x in response.data]
break
except Exception as e:
logger.warning(
f"Retrying... {retries} retries left. Error: {str(e)}"
)
retries -= 1
if retries == 0:
raise e

all_embeddings.extend(embeddings)

return np.array(all_embeddings)

def encode(
self,
sentences: list[str],
*,
task_name: str,
prompt_type: PromptType | None = None,
**kwargs: Any,
) -> np.ndarray:
logger.warning("The API will be publicly available soon. Stay tuned!")

instruction = self.get_instruction(task_name, prompt_type)
show_progress_bar = kwargs.pop("show_progress_bar", False)

return self._embed(
sentences,
instruction=instruction,
show_progress_bar=show_progress_bar,
)


seed_embedding = ModelMeta(
name="ByteDance-Seed/Doubao-1.5-Embedding",
revision="1",
release_date="2025-04-25",
languages=[
"eng-Latn",
"zho-Hans",
],
loader=partial(
SeedTextEmbeddingModel,
model_name="doubao-1-5-embedding",
rate_limit_per_minute=300,
),
max_tokens=32768,
embed_dim=2048,
open_weights=False,
n_parameters=None,
memory_usage_mb=None,
license=None,
reference="https://console.volcengine.com/ark/region:ark+cn-beijing/model/detail?Id=doubao-1-5-embedding",
similarity_fn_name="cosine",
framework=["API"],
use_instructions=True,
training_datasets=None,
public_training_code=None,
public_training_data=None,
)