diff --git a/docs/create_tasks_table.py b/docs/create_tasks_table.py index f7e79331ec..ac16f0313d 100644 --- a/docs/create_tasks_table.py +++ b/docs/create_tasks_table.py @@ -7,8 +7,8 @@ import polars as pl import mteb -from mteb.abstasks.TaskMetadata import PROGRAMMING_LANGS, TASK_TYPE -from mteb.languages import ISO_TO_FAM_LEVEL0, ISO_TO_LANGUAGE +from mteb.abstasks.TaskMetadata import TASK_TYPE +from mteb.languages import ISO_TO_FAM_LEVEL0, ISO_TO_LANGUAGE, PROGRAMMING_LANGS def author_from_bibtex(bibtex: str | None) -> str: diff --git a/mteb/abstasks/TaskMetadata.py b/mteb/abstasks/TaskMetadata.py index c283457273..66a2f5b1ed 100644 --- a/mteb/abstasks/TaskMetadata.py +++ b/mteb/abstasks/TaskMetadata.py @@ -16,10 +16,7 @@ from ..encoder_interface import PromptType from ..languages import ( ISO_LANGUAGE_SCRIPT, - ISO_TO_LANGUAGE, - ISO_TO_SCRIPT, - path_to_lang_codes, - path_to_lang_scripts, + check_language_code, ) TASK_SUBTYPE = Literal[ @@ -160,23 +157,6 @@ list[ISO_LANGUAGE_SCRIPT], Mapping[HFSubset, list[ISO_LANGUAGE_SCRIPT]] ] -PROGRAMMING_LANGS = [ - "python", - "javascript", - "typescript", - "go", - "ruby", - "java", - "php", - "c", - "c++", - "rust", - "swift", - "scala", - "shell", - "sql", -] - METRIC_NAME = str METRIC_VALUE = Union[int, float, dict[str, Any]] @@ -320,34 +300,10 @@ def eval_langs_are_valid(self, eval_langs: LANGUAGES) -> None: if isinstance(eval_langs, dict): for langs in eval_langs.values(): for code in langs: - self._check_language_code(code) + check_language_code(code) else: for code in eval_langs: - self._check_language_code(code) - - @staticmethod - def _check_language_code(code): - """This method checks that the language code (e.g. "eng-Latn") is valid.""" - if "-" not in code: - raise ValueError( - f"Language code should be specified as a BCP-47 language tag (e.g. 'eng-Latn'). Got: {code}" - ) - lang, script = code.split("-") - if script == "Code": - if lang in PROGRAMMING_LANGS: - return # override for code - else: - raise ValueError( - f"Programming language {lang} is not a valid programming language." - ) - if lang not in ISO_TO_LANGUAGE: - raise ValueError( - f"Invalid language code: {lang}, you can find valid ISO 639-3 codes in {path_to_lang_codes}" - ) - if script not in ISO_TO_SCRIPT: - raise ValueError( - f"Invalid script code: {script}, you can find valid ISO 15924 codes in {path_to_lang_scripts}" - ) + check_language_code(code) @property def bcp47_codes(self) -> list[ISO_LANGUAGE_SCRIPT]: diff --git a/mteb/languages.py b/mteb/languages.py index e83dd308cd..4761229f91 100644 --- a/mteb/languages.py +++ b/mteb/languages.py @@ -20,6 +20,24 @@ path_to_lang_scripts = Path(__file__).parent / "iso_15924_to_script.json" path_to_lang_fam = Path(__file__).parent / "language_family.json" +PROGRAMMING_LANGS = [ + "python", + "javascript", + "typescript", + "go", + "ruby", + "java", + "php", + "c", + "c++", + "c#", + "rust", + "swift", + "scala", + "shell", + "sql", +] + with path_to_lang_codes.open("r") as f: ISO_TO_LANGUAGE = json.load(f) @@ -98,3 +116,23 @@ def contains_scripts(self, scripts: Iterable[str]) -> bool: if not self.contains_script(s): return False return True + + +def check_language_code(code: str) -> None: + """This method checks that the language code (e.g. "eng-Latn") is valid.""" + lang, script = code.split("-") + if script == "Code": + if lang in PROGRAMMING_LANGS: + return # override for code + else: + raise ValueError( + f"Programming language {lang} is not a valid programming language." + ) + if lang not in ISO_TO_LANGUAGE: + raise ValueError( + f"Invalid language code: {lang}, you can find valid ISO 639-3 codes in {path_to_lang_codes}" + ) + if script not in ISO_TO_SCRIPT: + raise ValueError( + f"Invalid script code: {script}, you can find valid ISO 15924 codes in {path_to_lang_scripts}" + ) diff --git a/mteb/model_meta.py b/mteb/model_meta.py index 74f4a79f64..2aeb1ac6d6 100644 --- a/mteb/model_meta.py +++ b/mteb/model_meta.py @@ -17,7 +17,10 @@ from mteb.encoder_interface import Encoder from .custom_validators import LICENSES, MODALITIES, STR_DATE, STR_URL -from .languages import ISO_LANGUAGE_SCRIPT +from .languages import ( + ISO_LANGUAGE_SCRIPT, + check_language_code, +) if TYPE_CHECKING: from .models.sentence_transformer_wrapper import SentenceTransformerWrapper @@ -123,6 +126,16 @@ def to_dict(self): dict_repr["loader"] = get_loader_name(loader) return dict_repr + @field_validator("languages") + @classmethod + def languages_are_valid(cls, languages: list[ISO_LANGUAGE_SCRIPT] | None) -> None: + if languages is None: + return None + + for code in languages: + check_language_code(code) + return languages + @field_validator("name") @classmethod def check_name(cls, v: str | None) -> str | None: diff --git a/mteb/models/align_models.py b/mteb/models/align_models.py index be8ff8e56d..d43820d539 100644 --- a/mteb/models/align_models.py +++ b/mteb/models/align_models.py @@ -139,7 +139,7 @@ def get_fused_embeddings( model_name="kakaobrain/align-base", ), name="kakaobrain/align-base", - languages=["eng_Latn"], + languages=["eng-Latn"], revision="e96a37facc7b1f59090ece82293226b817afd6ba", release_date="2023-02-24", modalities=["image", "text"], diff --git a/mteb/models/arctic_models.py b/mteb/models/arctic_models.py index 8397157f43..ca0d0fbb34 100644 --- a/mteb/models/arctic_models.py +++ b/mteb/models/arctic_models.py @@ -5,80 +5,80 @@ from mteb.model_meta import ModelMeta, sentence_transformers_loader LANGUAGES_V2_0 = [ - "afr_Latn", - "ara_Arab", - "aze_Latn", - "bel_Cyrl", - "bul_Cyrl", - "ben_Beng", - "cat_Latn", - "ceb_Latn", - "ces_Latn", - "cym_Latn", - "dan_Latn", - "deu_Latn", - "ell_Grek", - "eng_Latn", - "spa_Latn", - "est_Latn", - "eus_Latn", - "fas_Arab", - "fin_Latn", - "fra_Latn", - "glg_Latn", - "guj_Gujr", - "heb_Hebr", - "hin_Deva", - "hrv_Latn", - "hat_Latn", - "hun_Latn", - "hye_Armn", - "ind_Latn", - "isl_Latn", - "ita_Latn", - "jpn_Jpan", - "jav_Latn", - "kat_Geor", - "kaz_Cyrl", - "khm_Khmr", - "kan_Knda", - "kor_Hang", - "kir_Cyrl", - "lao_Laoo", - "lit_Latn", - "lav_Latn", - "mkd_Cyrl", - "mal_Mlym", - "mon_Cyrl", - "mar_Deva", - "msa_Latn", - "mya_Mymr", - "nep_Deva", - "nld_Latn", - "pan_Guru", - "pol_Latn", - "por_Latn", - "que_Latn", - "ron_Latn", - "rus_Cyrl", - "sin_Sinh", - "slk_Latn", - "slv_Latn", - "som_Latn", - "sqi_Latn", - "srp_Cyrl", - "swe_Latn", - "swa_Latn", - "tam_Taml", - "tel_Telu", - "tha_Thai", - "tgl_Latn", - "tur_Latn", - "ukr_Cyrl", - "urd_Arab", - "vie_Latn", - "yor_Latn", - "zho_Hans", + "afr-Latn", + "ara-Arab", + "aze-Latn", + "bel-Cyrl", + "bul-Cyrl", + "ben-Beng", + "cat-Latn", + "ceb-Latn", + "ces-Latn", + "cym-Latn", + "dan-Latn", + "deu-Latn", + "ell-Grek", + "eng-Latn", + "spa-Latn", + "est-Latn", + "eus-Latn", + "fas-Arab", + "fin-Latn", + "fra-Latn", + "glg-Latn", + "guj-Gujr", + "heb-Hebr", + "hin-Deva", + "hrv-Latn", + "hat-Latn", + "hun-Latn", + "hye-Armn", + "ind-Latn", + "isl-Latn", + "ita-Latn", + "jpn-Jpan", + "jav-Latn", + "kat-Geor", + "kaz-Cyrl", + "khm-Khmr", + "kan-Knda", + "kor-Hang", + "kir-Cyrl", + "lao-Laoo", + "lit-Latn", + "lav-Latn", + "mkd-Cyrl", + "mal-Mlym", + "mon-Cyrl", + "mar-Deva", + "msa-Latn", + "mya-Mymr", + "nep-Deva", + "nld-Latn", + "pan-Guru", + "pol-Latn", + "por-Latn", + "que-Latn", + "ron-Latn", + "rus-Cyrl", + "sin-Sinh", + "slk-Latn", + "slv-Latn", + "som-Latn", + "sqi-Latn", + "srp-Cyrl", + "swe-Latn", + "swa-Latn", + "tam-Taml", + "tel-Telu", + "tha-Thai", + "tgl-Latn", + "tur-Latn", + "ukr-Cyrl", + "urd-Arab", + "vie-Latn", + "yor-Latn", + "zho-Hans", ] arctic_v1_training_datasets = { @@ -126,7 +126,7 @@ name="Snowflake/snowflake-arctic-embed-xs", revision="742da4f66e1823b5b4dbe6c320a1375a1fd85f9e", release_date="2024-07-08", # initial commit of hf model. - languages=["eng_Latn"], + languages=["eng-Latn"], open_weights=True, framework=["Sentence Transformers", "PyTorch"], n_parameters=22_600_000, @@ -154,7 +154,7 @@ name="Snowflake/snowflake-arctic-embed-s", revision="d3c1d2d433dd0fdc8e9ca01331a5f225639e798f", release_date="2024-04-12", # initial commit of hf model. - languages=["eng_Latn"], + languages=["eng-Latn"], open_weights=True, framework=["Sentence Transformers", "PyTorch"], n_parameters=32_200_000, @@ -182,7 +182,7 @@ name="Snowflake/snowflake-arctic-embed-m", revision="cc17beacbac32366782584c8752220405a0f3f40", release_date="2024-04-12", # initial commit of hf model. - languages=["eng_Latn"], + languages=["eng-Latn"], open_weights=True, framework=["Sentence Transformers", "PyTorch"], n_parameters=109_000_000, @@ -210,7 +210,7 @@ name="Snowflake/snowflake-arctic-embed-m-long", revision="89d0f6ab196eead40b90cb6f9fefec01a908d2d1", release_date="2024-04-12", # initial commit of hf model. - languages=["eng_Latn"], + languages=["eng-Latn"], open_weights=True, framework=["Sentence Transformers", "PyTorch"], n_parameters=137_000_000, @@ -237,7 +237,7 @@ name="Snowflake/snowflake-arctic-embed-l", revision="9a9e5834d2e89cdd8bb72b64111dde496e4fe78c", release_date="2024-04-12", # initial commit of hf model. - languages=["eng_Latn"], + languages=["eng-Latn"], open_weights=True, framework=["Sentence Transformers", "PyTorch"], n_parameters=335_000_000, @@ -267,7 +267,7 @@ name="Snowflake/snowflake-arctic-embed-m-v1.5", revision="97eab2e17fcb7ccb8bb94d6e547898fa1a6a0f47", release_date="2024-07-08", # initial commit of hf model. - languages=["eng_Latn"], + languages=["eng-Latn"], open_weights=True, framework=["Sentence Transformers", "PyTorch"], n_parameters=109_000_000, diff --git a/mteb/models/bge_models.py b/mteb/models/bge_models.py index ed360fbbdf..9ccc291553 100644 --- a/mteb/models/bge_models.py +++ b/mteb/models/bge_models.py @@ -137,64 +137,64 @@ # https://huggingface.co/BAAI/bge-m3/discussions/29 bgem3_languages = [ - "afr_Latn", # af + "afr-Latn", # af # als - "amh_Ethi", # am + "amh-Ethi", # am # an # ar - "azj_Latn", # arz + "azj-Latn", # arz # as - "ast_Latn", # ast + "ast-Latn", # ast # av # az - "azj_Latn", # azb + "azj-Latn", # azb # ba # bar # bcl - "ben_Beng", # be - "bul_Cyrl", # bg + "ben-Beng", # be + "bul-Cyrl", # bg # bh # bn # bo - "bel_Cyrl", # bpy + "bel-Cyrl", # bpy # br # bs # bxr - "cat_Latn", # ca + "cat-Latn", # ca # cbk # ce - "ceb_Latn", # ceb - "ckb_Arab", # ckb + "ceb-Latn", # ceb + "ckb-Arab", # ckb # co # cs # cv # cy - "dan_Latn", # da - "deu_Latn", # de + "dan-Latn", # da + "deu-Latn", # de # diq # dsb # dty # dv - "ell_Grek", # el + "ell-Grek", # el # eml - "eng_Latn", # en + "eng-Latn", # en # eo - "est_Latn", # es + "est-Latn", # es # et # eu # fa - "fin_Latn", # fi - "fra_Latn", # fr + "fin-Latn", # fi + "fra-Latn", # fr # fy # ga # gd - "glg_Latn", # gl + "glg-Latn", # gl # gn # gom - "guj_Gujr", # gu + "guj-Gujr", # gu # gv - "heb_Hebr", # he - "hin_Deva", # hi + "heb-Hebr", # he + "hin-Deva", # hi # hif # hr # hsb @@ -207,15 +207,15 @@ # ilo # io # is - "ita_Latn", # it - "jpn_Jpan", # ja + "ita-Latn", # it + "jpn-Jpan", # ja # jbo # jv # ka # kk # km # kn - "kor_Hang", # ko + "kor-Hang", # ko # krc # ku # kv @@ -266,7 +266,7 @@ # qu # rm # ro - "rus_Cyrl", # ru + "rus-Cyrl", # ru # sa # sah # sc @@ -286,14 +286,14 @@ # ta # te # tg - "tha_Thai", # th + "tha-Thai", # th # tk # tl # tr # tt # tyv # ug - "ukr_Cyrl", # uk + "ukr-Cyrl", # uk # ur # uz # vec @@ -309,7 +309,7 @@ # yi # yo # yue - "zho_Hans", # zh + "zho-Hans", # zh ] bge_small_en_v1_5 = ModelMeta( @@ -320,7 +320,7 @@ model_prompts=model_prompts, ), name="BAAI/bge-small-en-v1.5", - languages=["eng_Latn"], + languages=["eng-Latn"], open_weights=True, revision="5c38ec7c405ec4b44b94cc5a9bb96e735b38267a", release_date="2023-09-12", # initial commit of hf model. @@ -346,7 +346,7 @@ model_prompts=model_prompts, ), name="BAAI/bge-base-en-v1.5", - languages=["eng_Latn"], + languages=["eng-Latn"], open_weights=True, revision="a5beb1e3e68b9ab74eb54cfd186867f64f240e1a", release_date="2023-09-11", # initial commit of hf model. @@ -372,7 +372,7 @@ model_prompts=model_prompts, ), name="BAAI/bge-large-en-v1.5", - languages=["eng_Latn"], + languages=["eng-Latn"], open_weights=True, revision="d4aa6901d3a41ba39fb536a557fa166f842b0e09", release_date="2023-09-12", # initial commit of hf model. @@ -398,7 +398,7 @@ model_prompts=model_prompts_zh, ), name="BAAI/bge-small-zh", - languages=["zho_Hans"], + languages=["zho-Hans"], open_weights=True, revision="1d2363c5de6ce9ba9c890c8e23a4c72dce540ca8", release_date="2023-08-05", # initial commit of hf model. @@ -425,7 +425,7 @@ model_prompts=model_prompts_zh, ), name="BAAI/bge-base-zh", - languages=["zho_Hans"], + languages=["zho-Hans"], open_weights=True, revision="0e5f83d4895db7955e4cb9ed37ab73f7ded339b6", release_date="2023-08-05", # initial commit of hf model. @@ -452,7 +452,7 @@ model_prompts=model_prompts_zh, ), name="BAAI/bge-large-zh", - languages=["zho_Hans"], + languages=["zho-Hans"], open_weights=True, revision="b5d9f5c027e87b6f0b6fa4b614f8f9cdc45ce0e8", release_date="2023-08-02", # initial commit of hf model. @@ -479,7 +479,7 @@ model_prompts=model_prompts, ), name="BAAI/bge-small-en", - languages=["eng_Latn"], + languages=["eng-Latn"], open_weights=True, revision="4778d71a06863076696b03fd2777eb118712cad8", release_date="2023-08-05", # initial commit of hf model. @@ -506,7 +506,7 @@ model_prompts=model_prompts, ), name="BAAI/bge-base-en", - languages=["eng_Latn"], + languages=["eng-Latn"], open_weights=True, revision="b737bf5dcc6ee8bdc530531266b4804a5d77b5d8", release_date="2023-08-05", # initial commit of hf model. @@ -533,7 +533,7 @@ model_prompts=model_prompts, ), name="BAAI/bge-large-en", - languages=["eng_Latn"], + languages=["eng-Latn"], open_weights=True, revision="abe7d9d814b775ca171121fb03f394dc42974275", release_date="2023-08-05", # initial commit of hf model. @@ -561,7 +561,7 @@ model_prompts=model_prompts_zh, ), name="BAAI/bge-small-zh-v1.5", - languages=["zho_Hans"], + languages=["zho-Hans"], open_weights=True, revision="7999e1d3359715c523056ef9478215996d62a620", release_date="2023-09-12", # initial commit of hf model. @@ -587,7 +587,7 @@ model_prompts=model_prompts_zh, ), name="BAAI/bge-base-zh-v1.5", - languages=["zho_Hans"], + languages=["zho-Hans"], open_weights=True, revision="f03589ceff5aac7111bd60cfc7d497ca17ecac65", release_date="2023-09-11", # initial commit of hf model. @@ -613,7 +613,7 @@ model_prompts=model_prompts_zh, ), name="BAAI/bge-large-zh-v1.5", - languages=["zho_Hans"], + languages=["zho-Hans"], open_weights=True, revision="79e7739b6ab944e86d6171e44d24c997fc1e0116", release_date="2023-09-12", # initial commit of hf model. @@ -721,13 +721,13 @@ ), name="BAAI/bge-multilingual-gemma2", languages=[ - "eng_Latn", - "zho_Hans", - "kor_Hang", - "kor_Latn", - "fra_Latn", - "jpn_Jpan", - "jpn_Latn", + "eng-Latn", + "zho-Hans", + "kor-Hang", + "kor-Latn", + "fra-Latn", + "jpn-Jpan", + "jpn-Latn", ], # This list is incomlete. Their description says "and more". # I'm also unsure about the scripts. open_weights=True, @@ -760,7 +760,7 @@ ), name="BAAI/bge-en-icl", languages=[ - "eng_Latn", + "eng-Latn", ], open_weights=True, revision="971c7e1445cc86656ca0bd85ed770b8675a40bb5", diff --git a/mteb/models/blip2_models.py b/mteb/models/blip2_models.py index 0314ffcd22..899f3fc54e 100644 --- a/mteb/models/blip2_models.py +++ b/mteb/models/blip2_models.py @@ -227,7 +227,7 @@ def get_fused_embeddings( model_name="Salesforce/blip2-opt-2.7b", ), name="Salesforce/blip2-opt-2.7b", - languages=["eng_Latn"], + languages=["eng-Latn"], revision="51572668da0eb669e01a189dc22abe6088589a24", release_date="2024-03-22", modalities=["image", "text"], @@ -252,7 +252,7 @@ def get_fused_embeddings( model_name="Salesforce/blip2-opt-6.7b-coco", ), name="Salesforce/blip2-opt-6.7b-coco", - languages=["eng_Latn"], + languages=["eng-Latn"], revision="0d580de59320a25a4d2c386387bcef310d5f286e", release_date="2024-03-31", modalities=["image", "text"], diff --git a/mteb/models/blip_models.py b/mteb/models/blip_models.py index 9fadf15e1a..bad1a85948 100644 --- a/mteb/models/blip_models.py +++ b/mteb/models/blip_models.py @@ -160,7 +160,7 @@ def get_fused_embeddings( model_name="Salesforce/blip-image-captioning-large", ), name="Salesforce/blip-image-captioning-large", - languages=["eng_Latn"], + languages=["eng-Latn"], revision="2227ac38c9f16105cb0412e7cab4759978a8fd90", release_date="2023-12-07", modalities=["image", "text"], @@ -189,7 +189,7 @@ def get_fused_embeddings( model_name="Salesforce/blip-image-captioning-base", ), name="Salesforce/blip-image-captioning-base", - languages=["eng_Latn"], + languages=["eng-Latn"], revision="89b09ea1789f7addf2f6d6f0dfc4ce10ab58ef84", release_date="2023-08-01", modalities=["image", "text"], @@ -219,7 +219,7 @@ def get_fused_embeddings( model_name="Salesforce/blip-vqa-base", ), name="Salesforce/blip-vqa-base", - languages=["eng_Latn"], + languages=["eng-Latn"], revision="c7df8e7cd7aa2ee9af18f56e2b29e59a92651b64", release_date="2023-12-07", modalities=["image", "text"], @@ -247,7 +247,7 @@ def get_fused_embeddings( model_name="Salesforce/blip-vqa-capfilt-large", ), name="Salesforce/blip-vqa-capfilt-large", - languages=["eng_Latn"], + languages=["eng-Latn"], revision="e53f95265aeab69013fabb5380500ab984adbbb4", release_date="2023-01-22", modalities=["image", "text"], @@ -275,7 +275,7 @@ def get_fused_embeddings( model_name="Salesforce/blip-itm-base-coco", ), name="Salesforce/blip-itm-base-coco", - languages=["eng_Latn"], + languages=["eng-Latn"], revision="7eaa90c11850c0b17fc38c6a11e7d88bd6ac231f", release_date="2023-08-01", modalities=["image", "text"], @@ -303,7 +303,7 @@ def get_fused_embeddings( model_name="Salesforce/blip-itm-large-coco", ), name="Salesforce/blip-itm-large-coco", - languages=["eng_Latn"], + languages=["eng-Latn"], revision="fef05cafc05298067cbbca00b125749394a77a6f", release_date="2023-08-01", modalities=["image", "text"], @@ -332,7 +332,7 @@ def get_fused_embeddings( model_name="Salesforce/blip-itm-base-flickr", ), name="Salesforce/blip-itm-base-flickr", - languages=["eng_Latn"], + languages=["eng-Latn"], revision="1de29e660d91ae1786c1876212ea805a22eab251", release_date="2023-08-01", modalities=["image", "text"], @@ -361,7 +361,7 @@ def get_fused_embeddings( model_name="Salesforce/blip-itm-large-flickr", ), name="Salesforce/blip-itm-large-flickr", - languages=["eng_Latn"], + languages=["eng-Latn"], revision="bda12e6506758f54261b5ab174b2c55a3ba143fb", release_date="2023-08-01", modalities=["image", "text"], diff --git a/mteb/models/bm25.py b/mteb/models/bm25.py index 3de9be16e8..6c9db2b808 100644 --- a/mteb/models/bm25.py +++ b/mteb/models/bm25.py @@ -123,7 +123,7 @@ def encode(self, texts: list[str], **kwargs): bm25_s = ModelMeta( loader=partial(bm25_loader, model_name="bm25s"), # type: ignore name="bm25s", - languages=["eng_Latn"], + languages=["eng-Latn"], open_weights=True, revision="0_1_10", release_date="2024-07-10", ## release of version 0.1.10 diff --git a/mteb/models/cde_models.py b/mteb/models/cde_models.py index c8e398c1a3..9845ce71b1 100644 --- a/mteb/models/cde_models.py +++ b/mteb/models/cde_models.py @@ -12,7 +12,7 @@ cde_small_v1 = ModelMeta( loader=no_model_implementation_available, name="jxm/cde-small-v1", - languages=["eng_Latn"], + languages=["eng-Latn"], open_weights=True, revision="8d5736163718a8b65cd787b75ed61020d18bad3c", release_date="2024-09-24", @@ -35,7 +35,7 @@ cde_small_v2 = ModelMeta( loader=no_model_implementation_available, name="jxm/cde-small-v2", - languages=["eng_Latn"], + languages=["eng-Latn"], open_weights=True, revision="a7e5882ad52c27ea2831fc8258f24379c25cb459", release_date="2025-01-13", diff --git a/mteb/models/clip_models.py b/mteb/models/clip_models.py index a8c3da96c8..054ff92c2d 100644 --- a/mteb/models/clip_models.py +++ b/mteb/models/clip_models.py @@ -143,7 +143,7 @@ def get_fused_embeddings( model_name="openai/clip-vit-large-patch14", ), name="openai/clip-vit-large-patch14", - languages=["eng_Latn"], + languages=["eng-Latn"], revision="32bd64288804d66eefd0ccbe215aa642df71cc41", release_date="2021-02-26", modalities=["image", "text"], @@ -168,7 +168,7 @@ def get_fused_embeddings( model_name="openai/clip-vit-base-patch32", ), name="openai/clip-vit-base-patch32", - languages=["eng_Latn"], + languages=["eng-Latn"], revision="3d74acf9a28c67741b2f4f2ea7635f0aaf6f0268", release_date="2021-02-26", modalities=["image", "text"], @@ -193,7 +193,7 @@ def get_fused_embeddings( model_name="openai/clip-vit-base-patch16", ), name="openai/clip-vit-base-patch16", - languages=["eng_Latn"], + languages=["eng-Latn"], revision="57c216476eefef5ab752ec549e440a49ae4ae5f3", release_date="2021-02-26", modalities=["image", "text"], diff --git a/mteb/models/colbert_models.py b/mteb/models/colbert_models.py index aea1bcb914..8306daea9e 100644 --- a/mteb/models/colbert_models.py +++ b/mteb/models/colbert_models.py @@ -145,7 +145,7 @@ def similarity(self, a: np.ndarray, b: np.ndarray) -> np.ndarray: model_name="colbert-ir/colbertv2.0", ), name="colbert-ir/colbertv2.0", - languages=["eng_Latn"], + languages=["eng-Latn"], open_weights=True, revision="c1e84128e85ef755c096a95bdb06b47793b13acf", public_training_code=None, diff --git a/mteb/models/dino_models.py b/mteb/models/dino_models.py index 31cd442f25..847d7ee261 100644 --- a/mteb/models/dino_models.py +++ b/mteb/models/dino_models.py @@ -132,7 +132,7 @@ def get_fused_embeddings( model_name="facebook/dinov2-small", ), name="facebook/dinov2-small", - languages=["eng_Latn"], + languages=["eng-Latn"], revision="ed25f3a31f01632728cabb09d1542f84ab7b0056", release_date="2023-07-18", modalities=["image"], @@ -157,7 +157,7 @@ def get_fused_embeddings( model_name="facebook/dinov2-base", ), name="facebook/dinov2-base", - languages=["eng_Latn"], + languages=["eng-Latn"], revision="f9e44c814b77203eaa57a6bdbbd535f21ede1415", release_date="2023-07-18", modalities=["image"], @@ -182,7 +182,7 @@ def get_fused_embeddings( model_name="facebook/dinov2-large", ), name="facebook/dinov2-large", - languages=["eng_Latn"], + languages=["eng-Latn"], revision="47b73eefe95e8d44ec3623f8890bd894b6ea2d6c", release_date="2023-07-18", modalities=["image"], @@ -207,7 +207,7 @@ def get_fused_embeddings( model_name="facebook/dinov2-giant", ), name="facebook/dinov2-giant", - languages=["eng_Latn"], + languages=["eng-Latn"], revision="611a9d42f2335e0f921f1e313ad3c1b7178d206d", release_date="2023-07-18", modalities=["image"], diff --git a/mteb/models/e5_instruct.py b/mteb/models/e5_instruct.py index 49245cbed8..c6b8a72d8f 100644 --- a/mteb/models/e5_instruct.py +++ b/mteb/models/e5_instruct.py @@ -12,7 +12,7 @@ ) from mteb.models.instruct_wrapper import instruct_wrapper -MISTRAL_LANGUAGES = ["eng_Latn", "fra_Latn", "deu_Latn", "ita_Latn", "spa_Latn"] +MISTRAL_LANGUAGES = ["eng-Latn", "fra-Latn", "deu-Latn", "ita-Latn", "spa-Latn"] E5_INSTRUCTION = "Instruct: {instruction}\nQuery: " @@ -110,7 +110,7 @@ name="zeta-alpha-ai/Zeta-Alpha-E5-Mistral", revision="c791d37474fa6a5c72eb3a2522be346bc21fbfc3", release_date="2024-08-30", - languages=["eng_Latn"], + languages=["eng-Latn"], n_parameters=7110660096, memory_usage_mb=13563, max_tokens=32768.0, diff --git a/mteb/models/e5_models.py b/mteb/models/e5_models.py index c7515b761d..9cde1ad9bd 100644 --- a/mteb/models/e5_models.py +++ b/mteb/models/e5_models.py @@ -7,105 +7,105 @@ E5_PAPER_RELEASE_DATE = "2024-02-08" XLMR_LANGUAGES = [ - "afr_Latn", - "amh_Latn", - "ara_Latn", - "asm_Latn", - "aze_Latn", - "bel_Latn", - "bul_Latn", - "ben_Latn", - "ben_Beng", - "bre_Latn", - "bos_Latn", - "cat_Latn", - "ces_Latn", - "cym_Latn", - "dan_Latn", - "deu_Latn", - "ell_Latn", - "eng_Latn", - "epo_Latn", - "spa_Latn", - "est_Latn", - "eus_Latn", - "fas_Latn", - "fin_Latn", - "fra_Latn", - "fry_Latn", - "gle_Latn", - "gla_Latn", - "glg_Latn", - "guj_Latn", - "hau_Latn", - "heb_Latn", - "hin_Latn", - "hin_Deva", - "hrv_Latn", - "hun_Latn", - "hye_Latn", - "ind_Latn", - "isl_Latn", - "ita_Latn", - "jpn_Latn", - "jav_Latn", - "kat_Latn", - "kaz_Latn", - "khm_Latn", - "kan_Latn", - "kor_Latn", - "kur_Latn", - "kir_Latn", - "lat_Latn", - "lao_Latn", - "lit_Latn", - "lav_Latn", - "mlg_Latn", - "mkd_Latn", - "mal_Latn", - "mon_Latn", - "mar_Latn", - "msa_Latn", - "mya_Latn", - "nep_Latn", - "nld_Latn", - "nob_Latn", - "orm_Latn", - "ori_Latn", - "pan_Latn", - "pol_Latn", - "pus_Latn", - "por_Latn", - "ron_Latn", - "rus_Latn", - "san_Latn", - "snd_Latn", - "sin_Latn", - "slk_Latn", - "slv_Latn", - "som_Latn", - "sqi_Latn", - "srp_Latn", - "sun_Latn", - "swe_Latn", - "swa_Latn", - "tam_Latn", - "tam_Taml", - "tel_Latn", - "tel_Telu", - "tha_Latn", - "tgl_Latn", - "tur_Latn", - "uig_Latn", - "ukr_Latn", - "urd_Latn", - "urd_Arab", - "uzb_Latn", - "vie_Latn", - "xho_Latn", - "yid_Latn", - "zho_Hant", - "zho_Hans", + "afr-Latn", + "amh-Latn", + "ara-Latn", + "asm-Latn", + "aze-Latn", + "bel-Latn", + "bul-Latn", + "ben-Latn", + "ben-Beng", + "bre-Latn", + "bos-Latn", + "cat-Latn", + "ces-Latn", + "cym-Latn", + "dan-Latn", + "deu-Latn", + "ell-Latn", + "eng-Latn", + "epo-Latn", + "spa-Latn", + "est-Latn", + "eus-Latn", + "fas-Latn", + "fin-Latn", + "fra-Latn", + "fry-Latn", + "gle-Latn", + "gla-Latn", + "glg-Latn", + "guj-Latn", + "hau-Latn", + "heb-Latn", + "hin-Latn", + "hin-Deva", + "hrv-Latn", + "hun-Latn", + "hye-Latn", + "ind-Latn", + "isl-Latn", + "ita-Latn", + "jpn-Latn", + "jav-Latn", + "kat-Latn", + "kaz-Latn", + "khm-Latn", + "kan-Latn", + "kor-Latn", + "kur-Latn", + "kir-Latn", + "lat-Latn", + "lao-Latn", + "lit-Latn", + "lav-Latn", + "mlg-Latn", + "mkd-Latn", + "mal-Latn", + "mon-Latn", + "mar-Latn", + "msa-Latn", + "mya-Latn", + "nep-Latn", + "nld-Latn", + "nob-Latn", + "orm-Latn", + "ori-Latn", + "pan-Latn", + "pol-Latn", + "pus-Latn", + "por-Latn", + "ron-Latn", + "rus-Latn", + "san-Latn", + "snd-Latn", + "sin-Latn", + "slk-Latn", + "slv-Latn", + "som-Latn", + "sqi-Latn", + "srp-Latn", + "sun-Latn", + "swe-Latn", + "swa-Latn", + "tam-Latn", + "tam-Taml", + "tel-Latn", + "tel-Telu", + "tha-Latn", + "tgl-Latn", + "tur-Latn", + "uig-Latn", + "ukr-Latn", + "urd-Latn", + "urd-Arab", + "uzb-Latn", + "vie-Latn", + "xho-Latn", + "yid-Latn", + "zho-Hant", + "zho-Hans", ] model_prompts = { @@ -230,7 +230,7 @@ model_prompts=model_prompts, ), name="intfloat/e5-small-v2", - languages=["eng_Latn"], + languages=["eng-Latn"], open_weights=True, revision="dca8b1a9dae0d4575df2bf423a5edb485a431236", release_date=E5_PAPER_RELEASE_DATE, @@ -257,7 +257,7 @@ model_prompts=model_prompts, ), name="intfloat/e5-small", - languages=["eng_Latn"], + languages=["eng-Latn"], open_weights=True, revision="e272f3049e853b47cb5ca3952268c6662abda68f", release_date=E5_PAPER_RELEASE_DATE, @@ -284,7 +284,7 @@ model_prompts=model_prompts, ), name="intfloat/e5-base-v2", - languages=["eng_Latn"], + languages=["eng-Latn"], open_weights=True, revision="1c644c92ad3ba1efdad3f1451a637716616a20e8", release_date=E5_PAPER_RELEASE_DATE, @@ -312,7 +312,7 @@ model_prompts=model_prompts, ), name="intfloat/e5-large-v2", - languages=["eng_Latn"], + languages=["eng-Latn"], open_weights=True, revision="b322e09026e4ea05f42beadf4d661fb4e101d311", release_date=E5_PAPER_RELEASE_DATE, diff --git a/mteb/models/e5_v.py b/mteb/models/e5_v.py index 14383b4413..5c7a227b44 100644 --- a/mteb/models/e5_v.py +++ b/mteb/models/e5_v.py @@ -194,7 +194,7 @@ def get_fused_embeddings( device_map="auto", ), name="royokong/e5-v", - languages=["eng_Latn"], + languages=["eng-Latn"], revision="0c1f22679417b3ae925d779442221c40cd1861ab", release_date="2024-07-17", modalities=["image", "text"], diff --git a/mteb/models/evaclip_models.py b/mteb/models/evaclip_models.py index 8cbd184447..099d26b241 100644 --- a/mteb/models/evaclip_models.py +++ b/mteb/models/evaclip_models.py @@ -183,7 +183,7 @@ def get_fused_embeddings( model_name="EVA02-CLIP-B-16", ), name="QuanSun/EVA02-CLIP-B-16", - languages=["eng_Latn"], + languages=["eng-Latn"], revision="11afd202f2ae80869d6cef18b1ec775e79bd8d12", release_date="2023-04-26", modalities=["image", "text"], @@ -208,7 +208,7 @@ def get_fused_embeddings( model_name="EVA02-CLIP-L-14", ), name="QuanSun/EVA02-CLIP-L-14", - languages=["eng_Latn"], + languages=["eng-Latn"], revision="11afd202f2ae80869d6cef18b1ec775e79bd8d12", release_date="2023-04-26", modalities=["image", "text"], @@ -233,7 +233,7 @@ def get_fused_embeddings( model_name="EVA02-CLIP-bigE-14", ), name="QuanSun/EVA02-CLIP-bigE-14", - languages=["eng_Latn"], + languages=["eng-Latn"], revision="11afd202f2ae80869d6cef18b1ec775e79bd8d12", release_date="2023-04-26", modalities=["image", "text"], @@ -259,7 +259,7 @@ def get_fused_embeddings( model_name="EVA02-CLIP-bigE-14-plus", ), name="QuanSun/EVA02-CLIP-bigE-14-plus", - languages=["eng_Latn"], + languages=["eng-Latn"], revision="11afd202f2ae80869d6cef18b1ec775e79bd8d12", release_date="2023-04-26", modalities=["image", "text"], diff --git a/mteb/models/gme_v_models.py b/mteb/models/gme_v_models.py index 8d83b54a33..29e7de8c78 100644 --- a/mteb/models/gme_v_models.py +++ b/mteb/models/gme_v_models.py @@ -412,7 +412,7 @@ def fetch_image( model_name="Alibaba-NLP/gme-Qwen2-VL-2B-Instruct", ), name="Alibaba-NLP/gme-Qwen2-VL-2B-Instruct", - languages=["eng_Latn", "cmn-Hans"], + languages=["eng-Latn", "cmn-Hans"], open_weights=True, revision="ce765ae71b8cdb208203cd8fb64a170b1b84293a", release_date="2024-12-24", @@ -437,7 +437,7 @@ def fetch_image( model_name="Alibaba-NLP/gme-Qwen2-VL-7B-Instruct", ), name="Alibaba-NLP/gme-Qwen2-VL-7B-Instruct", - languages=["eng_Latn", "cmn-Hans"], + languages=["eng-Latn", "cmn-Hans"], open_weights=True, revision="477027a6480f8630363be77751f169cc3434b673", release_date="2024-12-24", diff --git a/mteb/models/google_models.py b/mteb/models/google_models.py index cd98e35b45..2de26b55c9 100644 --- a/mteb/models/google_models.py +++ b/mteb/models/google_models.py @@ -12,25 +12,25 @@ from mteb.requires_package import requires_package MULTILINGUAL_EVALUATED_LANGUAGES = [ - "arb_Arab", - "ben_Beng", - "eng_Latn", - "spa_Latn", - "deu_Latn", - "pes_Arab", - "fin_Latn", - "fra_Latn", - "hin_Deva", - "ind_Latn", - "jpn_Jpan", - "kor_Hang", - "rus_Cyrl", - "swh_Latn", - "tel_Telu", - "tha_Thai", - "yor_Latn", - "zho_Hant", - "zho_Hans", + "arb-Arab", + "ben-Beng", + "eng-Latn", + "spa-Latn", + "deu-Latn", + "pes-Arab", + "fin-Latn", + "fra-Latn", + "hin-Deva", + "ind-Latn", + "jpn-Jpan", + "kor-Hang", + "rus-Cyrl", + "swh-Latn", + "tel-Telu", + "tha-Thai", + "yor-Latn", + "zho-Hant", + "zho-Hans", ] MODEL_PROMPTS = { diff --git a/mteb/models/gritlm_models.py b/mteb/models/gritlm_models.py index 02e48db4e1..9afc5b4c82 100644 --- a/mteb/models/gritlm_models.py +++ b/mteb/models/gritlm_models.py @@ -30,7 +30,7 @@ def gritlm_instruction(instruction: str = "", prompt_type=None) -> str: torch_dtype="auto", ), name="GritLM/GritLM-7B", - languages=["eng_Latn", "fra_Latn", "deu_Latn", "ita_Latn", "spa_Latn"], + languages=["eng-Latn", "fra-Latn", "deu-Latn", "ita-Latn", "spa-Latn"], open_weights=True, revision="13f00a0e36500c80ce12870ea513846a066004af", release_date="2024-02-15", @@ -58,7 +58,7 @@ def gritlm_instruction(instruction: str = "", prompt_type=None) -> str: torch_dtype="auto", ), name="GritLM/GritLM-8x7B", - languages=["eng_Latn", "fra_Latn", "deu_Latn", "ita_Latn", "spa_Latn"], + languages=["eng-Latn", "fra-Latn", "deu-Latn", "ita-Latn", "spa-Latn"], open_weights=True, revision="7f089b13e3345510281733ca1e6ff871b5b4bc76", release_date="2024-02-15", diff --git a/mteb/models/gte_models.py b/mteb/models/gte_models.py index 7b7464ff26..e4f96cd631 100644 --- a/mteb/models/gte_models.py +++ b/mteb/models/gte_models.py @@ -65,7 +65,7 @@ def instruction_template( embed_eos="<|endoftext|>", ), name="Alibaba-NLP/gte-Qwen1.5-7B-instruct", - languages=["eng_Latn"], + languages=["eng-Latn"], open_weights=True, revision="07d27e5226328010336563bc1b564a5e3436a298", release_date="2024-04-20", # initial commit of hf model. @@ -96,7 +96,7 @@ def instruction_template( embed_eos="<|endoftext|>", ), name="Alibaba-NLP/gte-Qwen2-1.5B-instruct", - languages=["eng_Latn"], + languages=["eng-Latn"], open_weights=True, revision="c6c1b92f4a3e1b92b326ad29dd3c8433457df8dd", release_date="2024-07-29", # initial commit of hf model. @@ -121,7 +121,7 @@ def instruction_template( revision="af7bd46fbb00b3a6963c8dd7f1786ddfbfbe973a", ), name="thenlper/gte-small-zh", - languages=["zho_Hans"], + languages=["zho-Hans"], open_weights=True, revision="af7bd46fbb00b3a6963c8dd7f1786ddfbfbe973a", release_date="2023-11-08", # initial commit of hf model. @@ -146,7 +146,7 @@ def instruction_template( revision="71ab7947d6fac5b64aa299e6e40e6c2b2e85976c", ), name="thenlper/gte-base-zh", - languages=["zho_Hans"], + languages=["zho-Hans"], open_weights=True, revision="71ab7947d6fac5b64aa299e6e40e6c2b2e85976c", release_date="2023-11-08", # initial commit of hf model. @@ -171,7 +171,7 @@ def instruction_template( revision="64c364e579de308104a9b2c170ca009502f4f545", ), name="thenlper/gte-large-zh", - languages=["zho_Hans"], + languages=["zho-Hans"], open_weights=True, revision="64c364e579de308104a9b2c170ca009502f4f545", release_date="2023-11-08", # initial commit of hf model. @@ -190,77 +190,77 @@ def instruction_template( ) gte_multilingual_langs = [ - "afr_Latn", - "ara_Arab", - "aze_Latn", - "bel_Cyrl", - "bul_Cyrl", - "ben_Beng", - "cat_Latn", - "ceb_Latn", - "ces_Latn", - "cym_Latn", - "dan_Latn", - "deu_Latn", - "ell_Grek", - "eng_Latn", - "spa_Latn", - "est_Latn", - "eus_Latn", - "fas_Arab", - "fin_Latn", - "fra_Latn", - "glg_Latn", - "guj_Gujr", - "heb_Hebr", - "hin_Deva", - "hrv_Latn", - "hat_Latn", - "hun_Latn", - "hye_Armn", - "ind_Latn", - "isl_Latn", - "ita_Latn", - "jpn_Jpan", - "jav_Latn", - "kat_Geor", - "kaz_Cyrl", - "khm_Khmr", - "kan_Knda", - "kor_Hang", - "kir_Cyrl", - "lao_Laoo", - "lit_Latn", - "lav_Latn", - "mkd_Cyrl", - "mal_Mlym", - "mon_Cyrl", - "mar_Deva", - "msa_Latn", - "mya_Mymr", - "nep_Deva", - "nld_Latn", - "nor_Latn", - "pan_Guru", - "pol_Latn", - "por_Latn", - "que_Latn", - "ron_Latn", - "rus_Cyrl", - "sin_Sinh", - "slk_Latn", - "slv_Latn", - "swa_Latn", - "tam_Taml", - "tel_Telu", - "tha_Thai", - "tgl_Latn", - "tur_Latn", - "ukr_Cyrl", - "urd_Arab", - "vie_Latn", - "yor_Latn", - "zho_Hans", + "afr-Latn", + "ara-Arab", + "aze-Latn", + "bel-Cyrl", + "bul-Cyrl", + "ben-Beng", + "cat-Latn", + "ceb-Latn", + "ces-Latn", + "cym-Latn", + "dan-Latn", + "deu-Latn", + "ell-Grek", + "eng-Latn", + "spa-Latn", + "est-Latn", + "eus-Latn", + "fas-Arab", + "fin-Latn", + "fra-Latn", + "glg-Latn", + "guj-Gujr", + "heb-Hebr", + "hin-Deva", + "hrv-Latn", + "hat-Latn", + "hun-Latn", + "hye-Armn", + "ind-Latn", + "isl-Latn", + "ita-Latn", + "jpn-Jpan", + "jav-Latn", + "kat-Geor", + "kaz-Cyrl", + "khm-Khmr", + "kan-Knda", + "kor-Hang", + "kir-Cyrl", + "lao-Laoo", + "lit-Latn", + "lav-Latn", + "mkd-Cyrl", + "mal-Mlym", + "mon-Cyrl", + "mar-Deva", + "msa-Latn", + "mya-Mymr", + "nep-Deva", + "nld-Latn", + "nor-Latn", + "pan-Guru", + "pol-Latn", + "por-Latn", + "que-Latn", + "ron-Latn", + "rus-Cyrl", + "sin-Sinh", + "slk-Latn", + "slv-Latn", + "swa-Latn", + "tam-Taml", + "tel-Telu", + "tha-Thai", + "tgl-Latn", + "tur-Latn", + "ukr-Cyrl", + "urd-Arab", + "vie-Latn", + "yor-Latn", + "zho-Hans", ] # Source: https://arxiv.org/pdf/2407.19669 gte_multi_training_data = { @@ -322,7 +322,7 @@ def instruction_template( revision="7ca8b4ca700621b67618669f5378fe5f5820b8e4", ), name="Alibaba-NLP/gte-modernbert-base", - languages=["eng_Latn"], + languages=["eng-Latn"], open_weights=True, revision="7ca8b4ca700621b67618669f5378fe5f5820b8e4", release_date="2025-01-21", # initial commit of hf model. diff --git a/mteb/models/ibm_granite_models.py b/mteb/models/ibm_granite_models.py index f0ab0f0c6e..db5a883f2c 100644 --- a/mteb/models/ibm_granite_models.py +++ b/mteb/models/ibm_granite_models.py @@ -5,19 +5,19 @@ from mteb.model_meta import ModelMeta, sentence_transformers_loader GRANITE_LANGUAGES = [ - "ara_Latn", - "ces_Latn", - "deu_Latn", - "eng_Latn", - "spa_Latn", - "fra_Latn", - "ita_Latn", - "jpn_Latn", - "kor_Latn", - "nld_Latn", - "por_Latn", - "zho_Hant", - "zho_Hans", + "ara-Latn", + "ces-Latn", + "deu-Latn", + "eng-Latn", + "spa-Latn", + "fra-Latn", + "ita-Latn", + "jpn-Latn", + "kor-Latn", + "nld-Latn", + "por-Latn", + "zho-Hant", + "zho-Hans", ] granite_training_data = { @@ -145,7 +145,7 @@ revision="eddbb57470f896b5f8e2bfcb823d8f0e2d2024a5", ), name="ibm-granite/granite-embedding-30m-english", - languages=["eng_Latn"], + languages=["eng-Latn"], open_weights=True, revision="eddbb57470f896b5f8e2bfcb823d8f0e2d2024a5", release_date="2024-12-18", @@ -172,7 +172,7 @@ revision="e48d3a5b47eaa18e3fe07d4676e187fd80f32730", ), name="ibm-granite/granite-embedding-125m-english", - languages=["eng_Latn"], + languages=["eng-Latn"], open_weights=True, revision="e48d3a5b47eaa18e3fe07d4676e187fd80f32730", release_date="2024-12-18", diff --git a/mteb/models/inf_models.py b/mteb/models/inf_models.py index f53d8c9bdb..6dc8411f6d 100644 --- a/mteb/models/inf_models.py +++ b/mteb/models/inf_models.py @@ -43,7 +43,7 @@ trust_remote_code=True, ), name="infly/inf-retriever-v1", - languages=["eng_Latn", "zho_Hans"], + languages=["eng-Latn", "zho-Hans"], open_weights=True, revision="cb70ca7c31dfa866b2eff2dad229c144d8ddfd91", release_date="2024-12-24", # initial commit of hf model. @@ -70,7 +70,7 @@ trust_remote_code=True, ), name="infly/inf-retriever-v1-1.5b", - languages=["eng_Latn", "zho_Hans"], + languages=["eng-Latn", "zho-Hans"], open_weights=True, revision="c9c05c2dd50707a486966ba81703021ae2094a06", release_date="2025-02-08", # initial commit of hf model. diff --git a/mteb/models/jina_clip.py b/mteb/models/jina_clip.py index 208b77e44a..c73a6b2de3 100644 --- a/mteb/models/jina_clip.py +++ b/mteb/models/jina_clip.py @@ -157,7 +157,7 @@ def encode( # type: ignore model_name="jinaai/jina-clip-v1", ), name="jinaai/jina-clip-v1", - languages=["eng_Latn"], + languages=["eng-Latn"], revision="06150c7c382d7a4faedc7d5a0d8cdb59308968f4", release_date="2024-05-30", modalities=["image", "text"], diff --git a/mteb/models/jina_models.py b/mteb/models/jina_models.py index a9c05c4041..4ac1050948 100644 --- a/mteb/models/jina_models.py +++ b/mteb/models/jina_models.py @@ -20,105 +20,105 @@ CURRENT_SENTENCE_TRANSFORMERS_VERSION = tuple(map(int, st_version.split("."))) XLMR_LANGUAGES = [ - "afr_Latn", - "amh_Latn", - "ara_Latn", - "asm_Latn", - "aze_Latn", - "bel_Latn", - "bul_Latn", - "ben_Latn", - "ben_Beng", - "bre_Latn", - "bos_Latn", - "cat_Latn", - "ces_Latn", - "cym_Latn", - "dan_Latn", - "deu_Latn", - "ell_Latn", - "eng_Latn", - "epo_Latn", - "spa_Latn", - "est_Latn", - "eus_Latn", - "fas_Latn", - "fin_Latn", - "fra_Latn", - "fry_Latn", - "gle_Latn", - "gla_Latn", - "glg_Latn", - "guj_Latn", - "hau_Latn", - "heb_Latn", - "hin_Latn", - "hin_Deva", - "hrv_Latn", - "hun_Latn", - "hye_Latn", - "ind_Latn", - "isl_Latn", - "ita_Latn", - "jpn_Latn", - "jav_Latn", - "kat_Latn", - "kaz_Latn", - "khm_Latn", - "kan_Latn", - "kor_Latn", - "kur_Latn", - "kir_Latn", - "lat_Latn", - "lao_Latn", - "lit_Latn", - "lav_Latn", - "mlg_Latn", - "mkd_Latn", - "mal_Latn", - "mon_Latn", - "mar_Latn", - "msa_Latn", - "mya_Latn", - "nep_Latn", - "nld_Latn", - "nob_Latn", - "orm_Latn", - "ori_Latn", - "pan_Latn", - "pol_Latn", - "pus_Latn", - "por_Latn", - "ron_Latn", - "rus_Latn", - "san_Latn", - "snd_Latn", - "sin_Latn", - "slk_Latn", - "slv_Latn", - "som_Latn", - "sqi_Latn", - "srp_Latn", - "sun_Latn", - "swe_Latn", - "swa_Latn", - "tam_Latn", - "tam_Taml", - "tel_Latn", - "tel_Telu", - "tha_Latn", - "tgl_Latn", - "tur_Latn", - "uig_Latn", - "ukr_Latn", - "urd_Latn", - "urd_Arab", - "uzb_Latn", - "vie_Latn", - "xho_Latn", - "yid_Latn", - "zho_Hant", - "zho_Hans", + "afr-Latn", + "amh-Latn", + "ara-Latn", + "asm-Latn", + "aze-Latn", + "bel-Latn", + "bul-Latn", + "ben-Latn", + "ben-Beng", + "bre-Latn", + "bos-Latn", + "cat-Latn", + "ces-Latn", + "cym-Latn", + "dan-Latn", + "deu-Latn", + "ell-Latn", + "eng-Latn", + "epo-Latn", + "spa-Latn", + "est-Latn", + "eus-Latn", + "fas-Latn", + "fin-Latn", + "fra-Latn", + "fry-Latn", + "gle-Latn", + "gla-Latn", + "glg-Latn", + "guj-Latn", + "hau-Latn", + "heb-Latn", + "hin-Latn", + "hin-Deva", + "hrv-Latn", + "hun-Latn", + "hye-Latn", + "ind-Latn", + "isl-Latn", + "ita-Latn", + "jpn-Latn", + "jav-Latn", + "kat-Latn", + "kaz-Latn", + "khm-Latn", + "kan-Latn", + "kor-Latn", + "kur-Latn", + "kir-Latn", + "lat-Latn", + "lao-Latn", + "lit-Latn", + "lav-Latn", + "mlg-Latn", + "mkd-Latn", + "mal-Latn", + "mon-Latn", + "mar-Latn", + "msa-Latn", + "mya-Latn", + "nep-Latn", + "nld-Latn", + "nob-Latn", + "orm-Latn", + "ori-Latn", + "pan-Latn", + "pol-Latn", + "pus-Latn", + "por-Latn", + "ron-Latn", + "rus-Latn", + "san-Latn", + "snd-Latn", + "sin-Latn", + "slk-Latn", + "slv-Latn", + "som-Latn", + "sqi-Latn", + "srp-Latn", + "sun-Latn", + "swe-Latn", + "swa-Latn", + "tam-Latn", + "tam-Taml", + "tel-Latn", + "tel-Telu", + "tha-Latn", + "tgl-Latn", + "tur-Latn", + "uig-Latn", + "ukr-Latn", + "urd-Latn", + "urd-Arab", + "uzb-Latn", + "vie-Latn", + "xho-Latn", + "yid-Latn", + "zho-Hant", + "zho-Hans", ] diff --git a/mteb/models/linq_models.py b/mteb/models/linq_models.py index 2c0eafa591..3fc773cc7b 100644 --- a/mteb/models/linq_models.py +++ b/mteb/models/linq_models.py @@ -28,7 +28,7 @@ def instruction_template( normalized=True, ), name="Linq-AI-Research/Linq-Embed-Mistral", - languages=["eng_Latn"], + languages=["eng-Latn"], open_weights=True, revision="0c1a0b0589177079acc552433cad51d7c9132379", release_date="2024-05-29", # initial commit of hf model. diff --git a/mteb/models/llm2clip_models.py b/mteb/models/llm2clip_models.py index 8b950867ab..86659efe7c 100644 --- a/mteb/models/llm2clip_models.py +++ b/mteb/models/llm2clip_models.py @@ -215,7 +215,7 @@ def get_fused_embeddings( model_name="microsoft/LLM2CLIP-Openai-L-14-336", ), name="microsoft/LLM2CLIP-Openai-L-14-336", - languages=["eng_Latn"], + languages=["eng-Latn"], revision="92512331f393a003c3d98404677f991c188162c9", release_date="2024-11-07", modalities=["image", "text"], @@ -241,7 +241,7 @@ def get_fused_embeddings( model_name="microsoft/LLM2CLIP-Openai-L-14-224", ), name="microsoft/LLM2CLIP-Openai-L-14-224", - languages=["eng_Latn"], + languages=["eng-Latn"], revision="6b8a11a94ff380fa220dfefe73ac9293d2677575", release_date="2024-11-07", modalities=["image", "text"], @@ -266,7 +266,7 @@ def get_fused_embeddings( model_name="microsoft/LLM2CLIP-Openai-B-16", ), name="microsoft/LLM2CLIP-Openai-B-16", - languages=["eng_Latn"], + languages=["eng-Latn"], revision="ecfb347eb3dcfeb2fbc2a2eae7de6ac5a001aaf8", release_date="2024-11-07", modalities=["image", "text"], diff --git a/mteb/models/llm2vec_models.py b/mteb/models/llm2vec_models.py index e8ee5c43e7..37983bc159 100644 --- a/mteb/models/llm2vec_models.py +++ b/mteb/models/llm2vec_models.py @@ -116,7 +116,7 @@ def loader_inner(**kwargs: Any) -> Encoder: torch_dtype=torch.bfloat16, ), name="McGill-NLP/LLM2Vec-Meta-Llama-3-8B-Instruct-mntp-supervised", - languages=["eng_Latn"], + languages=["eng-Latn"], open_weights=True, revision="baa8ebf04a1c2500e61288e7dad65e8ae42601a7", # TODO: Not sure what to put here as a model is made of two peft repos, each with a different revision @@ -144,7 +144,7 @@ def loader_inner(**kwargs: Any) -> Encoder: torch_dtype=torch.bfloat16, ), name="McGill-NLP/LLM2Vec-Meta-Llama-3-8B-Instruct-mntp-unsup-simcse", - languages=["eng_Latn"], + languages=["eng-Latn"], open_weights=True, revision="1cb7b735326d13a8541db8f57f35da5373f5e9c6", release_date="2024-04-09", @@ -171,7 +171,7 @@ def loader_inner(**kwargs: Any) -> Encoder: torch_dtype=torch.bfloat16, ), name="McGill-NLP/LLM2Vec-Mistral-7B-Instruct-v2-mntp-supervised", - languages=["eng_Latn"], + languages=["eng-Latn"], open_weights=True, revision="0ae69bdd5816105778b971c3138e8f8a18eaa3ae", release_date="2024-04-09", @@ -198,7 +198,7 @@ def loader_inner(**kwargs: Any) -> Encoder: torch_dtype=torch.bfloat16, ), name="McGill-NLP/LLM2Vec-Mistral-7B-Instruct-v2-mntp-unsup-simcse", - languages=["eng_Latn"], + languages=["eng-Latn"], open_weights=True, revision="2c055a5d77126c0d3dc6cd8ffa30e2908f4f45f8", release_date="2024-04-09", @@ -225,7 +225,7 @@ def loader_inner(**kwargs: Any) -> Encoder: torch_dtype=torch.bfloat16, ), name="McGill-NLP/LLM2Vec-Llama-2-7b-chat-hf-mntp-supervised", - languages=["eng_Latn"], + languages=["eng-Latn"], open_weights=True, revision="2c055a5d77126c0d3dc6cd8ffa30e2908f4f45f8", release_date="2024-04-09", @@ -252,7 +252,7 @@ def loader_inner(**kwargs: Any) -> Encoder: torch_dtype=torch.bfloat16, ), name="McGill-NLP/LLM2Vec-Llama-2-7b-chat-hf-mntp-unsup-simcse", - languages=["eng_Latn"], + languages=["eng-Latn"], open_weights=True, revision="a76944871d169ebe7c97eb921764cd063afed785", release_date="2024-04-09", @@ -279,7 +279,7 @@ def loader_inner(**kwargs: Any) -> Encoder: torch_dtype=torch.bfloat16, ), name="McGill-NLP/LLM2Vec-Sheared-LLaMA-mntp-supervised", - languages=["eng_Latn"], + languages=["eng-Latn"], open_weights=True, revision="a5943d406c6b016fef3f07906aac183cf1a0b47d", release_date="2024-04-09", @@ -306,7 +306,7 @@ def loader_inner(**kwargs: Any) -> Encoder: torch_dtype=torch.bfloat16, ), name="McGill-NLP/LLM2Vec-Sheared-LLaMA-mntp-unsup-simcse", - languages=["eng_Latn"], + languages=["eng-Latn"], open_weights=True, revision="a5943d406c6b016fef3f07906aac183cf1a0b47d", release_date="2024-04-09", diff --git a/mteb/models/misc_models.py b/mteb/models/misc_models.py index 54d3f3b72a..48a2e37d12 100644 --- a/mteb/models/misc_models.py +++ b/mteb/models/misc_models.py @@ -14,7 +14,7 @@ name="Haon-Chen/speed-embedding-7b-instruct", revision="c167e9a8144b397622ce47b85d9edcdeecef3d3f", release_date="2024-10-31", - languages=["eng_Latn"], + languages=["eng-Latn"], loader=None, n_parameters=7110660096, memory_usage_mb=13563, @@ -273,7 +273,7 @@ name="Hum-Works/lodestone-base-4096-v1", revision="9bbc2d0b57dd2198aea029404b0f976712a7d966", release_date="2023-08-25", - languages=["eng_Latn"], + languages=["eng-Latn"], loader=None, n_parameters=None, memory_usage_mb=None, @@ -361,7 +361,7 @@ name="BeastyZ/e5-R-mistral-7b", revision="3f810a6a7fd220369ad248e3705cf13d71803602", release_date="2024-06-28", - languages=["eng_Latn"], + languages=["eng-Latn"], loader=None, n_parameters=7241732096, memory_usage_mb=27625, @@ -420,7 +420,7 @@ name="Lajavaness/bilingual-embedding-large", revision="e83179d7a66e8aed1b3015e98bb5ae234ed89598", release_date="2024-06-24", - languages=["fra_Latn", "eng_Latn"], + languages=["fra-Latn", "eng-Latn"], loader=partial( # type: ignore sentence_transformers_loader, model_name="Lajavaness/bilingual-embedding-large", @@ -447,7 +447,7 @@ name="Lajavaness/bilingual-embedding-small", revision="ed4a1dd814de0db81d4a4e287c296a03194463e3", release_date="2024-07-17", - languages=["fra_Latn", "eng_Latn"], + languages=["fra-Latn", "eng-Latn"], loader=partial( # type: ignore sentence_transformers_loader, model_name="Lajavaness/bilingual-embedding-small", @@ -633,7 +633,7 @@ name="OrdalieTech/Solon-embeddings-large-0.1", revision="9f6465f6ea2f6d10c6294bc15d84edf87d47cdef", release_date="2023-12-09", - languages=["fra_Latn"], + languages=["fra-Latn"], loader=None, n_parameters=559890432, memory_usage_mb=2136, @@ -655,7 +655,7 @@ name="Omartificial-Intelligence-Space/Arabert-all-nli-triplet-Matryoshka", revision="d0361a36f6fe69febfc8550d0918abab174f6f30", release_date="2024-06-16", - languages=["ara_Arab"], + languages=["ara-Arab"], loader=None, n_parameters=135193344, memory_usage_mb=516, @@ -677,7 +677,7 @@ name="Omartificial-Intelligence-Space/Arabic-MiniLM-L12-v2-all-nli-triplet", revision="6916465c43b984e955aa6dc72851474f0128f428", release_date="2024-06-25", - languages=["ara_Arab"], + languages=["ara-Arab"], loader=None, n_parameters=117653760, memory_usage_mb=449, @@ -701,7 +701,7 @@ name="Omartificial-Intelligence-Space/Arabic-all-nli-triplet-Matryoshka", revision="1ca467cc576bd76666a4d21b24ee43afa914dd10", release_date="2024-06-14", - languages=["ara_Arab"], + languages=["ara-Arab"], loader=None, n_parameters=278043648, memory_usage_mb=1061, @@ -725,7 +725,7 @@ name="Omartificial-Intelligence-Space/Arabic-labse-Matryoshka", revision="ee6d5e33c78ed582ade47fd452a74ea52aa5bfe2", release_date="2024-06-16", - languages=["ara_Arab"], + languages=["ara-Arab"], loader=None, n_parameters=470926848, memory_usage_mb=1796, @@ -749,7 +749,7 @@ name="Omartificial-Intelligence-Space/Arabic-mpnet-base-all-nli-triplet", revision="2628cb641e040f44328195fadcdfb58e6d5cffa7", release_date="2024-06-15", - languages=["ara_Arab"], + languages=["ara-Arab"], loader=None, n_parameters=109486464, memory_usage_mb=418, @@ -773,7 +773,7 @@ name="Omartificial-Intelligence-Space/Marbert-all-nli-triplet-Matryoshka", revision="ecf3274e164f057c4a3dd70691cae0265d87a9d0", release_date="2024-06-17", - languages=["ara_Arab"], + languages=["ara-Arab"], loader=None, n_parameters=162841344, memory_usage_mb=621, @@ -892,7 +892,7 @@ name="manu/sentence_croissant_alpha_v0.4", revision="0ce6372e6a3c21134dcf26dcde13cca869c767fc", release_date="2024-04-27", - languages=["fra_Latn", "eng_Latn"], + languages=["fra-Latn", "eng-Latn"], loader=None, n_parameters=1279887360, memory_usage_mb=2441, @@ -915,7 +915,7 @@ name="thenlper/gte-base", revision="c078288308d8dee004ab72c6191778064285ec0c", release_date="2023-07-27", - languages=["eng_Latn"], + languages=["eng-Latn"], loader=None, n_parameters=109482752, memory_usage_mb=209, @@ -937,7 +937,7 @@ name="thenlper/gte-large", revision="4bef63f39fcc5e2d6b0aae83089f307af4970164", release_date="2023-07-27", - languages=["eng_Latn"], + languages=["eng-Latn"], loader=None, n_parameters=335142400, memory_usage_mb=639, @@ -959,7 +959,7 @@ name="thenlper/gte-small", revision="17e1f347d17fe144873b1201da91788898c639cd", release_date="2023-07-27", - languages=["eng_Latn"], + languages=["eng-Latn"], loader=None, n_parameters=33360512, memory_usage_mb=64, @@ -981,7 +981,7 @@ name="OrlikB/KartonBERT-USE-base-v1", revision="1f59dd58fe57995c0e867d5e29f03763eae99645", release_date="2024-09-30", - languages=["pol_Latn"], + languages=["pol-Latn"], loader=None, n_parameters=103705344, memory_usage_mb=396, @@ -1003,7 +1003,7 @@ name="OrlikB/st-polish-kartonberta-base-alpha-v1", revision="5590a0e2d7bb43674e44d7076b3ff157f7d4a1cb", release_date="2023-11-12", - languages=["pol_Latn"], + languages=["pol-Latn"], loader=None, n_parameters=None, memory_usage_mb=None, @@ -1025,7 +1025,7 @@ name="sdadas/mmlw-e5-base", revision="f10628ed55b5ec400502aff439bd714a6da0af30", release_date="2023-11-17", - languages=["pol_Latn"], + languages=["pol-Latn"], loader=None, n_parameters=278043648, memory_usage_mb=1061, @@ -1047,7 +1047,7 @@ name="dwzhu/e5-base-4k", revision="1b5664b8cb2bccd8c309429b7bfe5864402e8fbc", release_date="2024-03-28", - languages=["eng_Latn"], + languages=["eng-Latn"], loader=None, n_parameters=None, memory_usage_mb=None, @@ -1071,7 +1071,7 @@ name="sdadas/mmlw-e5-large", revision="5c143fb045ebed664fd85b43fc45155999eb110f", release_date="2023-11-17", - languages=["pol_Latn"], + languages=["pol-Latn"], loader=None, n_parameters=559890432, memory_usage_mb=2136, @@ -1093,7 +1093,7 @@ name="sdadas/mmlw-e5-small", revision="ff1298cb6d997f18b794d2f3d73cad2ba2ad739a", release_date="2023-11-17", - languages=["pol_Latn"], + languages=["pol-Latn"], loader=None, n_parameters=117653760, memory_usage_mb=449, @@ -1115,7 +1115,7 @@ name="sdadas/mmlw-roberta-base", revision="0ac7f23f6c96af601fa6a17852bd08d5136d6365", release_date="2023-11-17", - languages=["pol_Latn"], + languages=["pol-Latn"], loader=None, n_parameters=124442880, memory_usage_mb=475, @@ -1137,7 +1137,7 @@ name="sdadas/mmlw-roberta-large", revision="b8058066a8de32d0737b3cd82d8b4f4108745af9", release_date="2023-11-17", - languages=["pol_Latn"], + languages=["pol-Latn"], loader=None, n_parameters=434961408, memory_usage_mb=1659, @@ -1163,51 +1163,51 @@ } udever_langauges = [ - "aka_Latn", - "ara_Arab", - "asm_Beng", - "bam_Latn", - "ben_Beng", - "cat_Latn", - "eng_Latn", - "spa_Latn", - "eus_Latn", - "fon_Latn", - "fra_Latn", - "guj_Gujr", - "hin_Deva", - "ind_Latn", - "ibo_Latn", - "kik_Latn", - "kan_Knda", - "lug_Latn", - "lin_Latn", - "mal_Mlym", - "mar_Deva", - "nep_Deva", - "nso_Latn", - "nya_Latn", - "ori_Orya", - "pan_Guru", - "por_Latn", - "run_Latn", - "kin_Latn", - "sna_Latn", - "sot_Latn", - "swa_Latn", - "tam_Taml", - "tel_Telu", - "tsn_Latn", - "tso_Latn", - "tum_Latn", - "twi_Latn", - "urd_Arab", - "vie_Latn", - "wol_Latn", - "xho_Latn", - "yor_Latn", - "zho_Hans", - "zul_Latn", + "aka-Latn", + "ara-Arab", + "asm-Beng", + "bam-Latn", + "ben-Beng", + "cat-Latn", + "eng-Latn", + "spa-Latn", + "eus-Latn", + "fon-Latn", + "fra-Latn", + "guj-Gujr", + "hin-Deva", + "ind-Latn", + "ibo-Latn", + "kik-Latn", + "kan-Knda", + "lug-Latn", + "lin-Latn", + "mal-Mlym", + "mar-Deva", + "nep-Deva", + "nso-Latn", + "nya-Latn", + "ori-Orya", + "pan-Guru", + "por-Latn", + "run-Latn", + "kin-Latn", + "sna-Latn", + "sot-Latn", + "swa-Latn", + "tam-Taml", + "tel-Telu", + "tsn-Latn", + "tso-Latn", + "tum-Latn", + "twi-Latn", + "urd-Arab", + "vie-Latn", + "wol-Latn", + "xho-Latn", + "yor-Latn", + "zho-Hans", + "zul-Latn", ] izhx__udever_bloom_1b1 = ModelMeta( @@ -1302,7 +1302,7 @@ name="avsolatorio/GIST-Embedding-v0", revision="bf6b2e55e92f510a570ad4d7d2da2ec8cd22590c", release_date="2024-01-31", - languages=["eng_Latn"], + languages=["eng-Latn"], loader=None, n_parameters=109482240, memory_usage_mb=418, @@ -1341,7 +1341,7 @@ name="avsolatorio/GIST-all-MiniLM-L6-v2", revision="ea89dfad053bba14677bb784a4269898abbdce44", release_date="2024-02-03", - languages=["eng_Latn"], + languages=["eng-Latn"], loader=None, n_parameters=22713216, memory_usage_mb=87, @@ -1380,7 +1380,7 @@ name="avsolatorio/GIST-large-Embedding-v0", revision="7831200e2f7819b994490c091cf3258a2b821f0c", release_date="2024-02-14", - languages=["eng_Latn"], + languages=["eng-Latn"], loader=None, n_parameters=335141888, memory_usage_mb=1278, @@ -1419,7 +1419,7 @@ name="avsolatorio/GIST-small-Embedding-v0", revision="d6c4190f9e01b9994dc7cac99cf2f2b85cfb57bc", release_date="2024-02-03", - languages=["eng_Latn"], + languages=["eng-Latn"], loader=None, n_parameters=33360000, memory_usage_mb=127, @@ -1480,7 +1480,7 @@ name="aari1995/German_Semantic_STS_V2", revision="22912542b0ec7a7ef369837e28ffe6352a27afc9", release_date="2022-11-17", - languages=["deu_Latn"], + languages=["deu-Latn"], loader=None, n_parameters=335736320, memory_usage_mb=1281, @@ -1503,7 +1503,7 @@ name="abhinand/MedEmbed-small-v0.1", revision="40a5850d046cfdb56154e332b4d7099b63e8d50e", release_date="2024-10-20", - languages=["eng_Latn"], + languages=["eng-Latn"], loader=None, n_parameters=33360000, memory_usage_mb=127, @@ -1534,7 +1534,7 @@ name="avsolatorio/NoInstruct-small-Embedding-v0", revision="b38747000553d8268915c95a55fc87e707c9aadd", release_date="2024-05-01", - languages=["eng_Latn"], + languages=["eng-Latn"], loader=None, n_parameters=33360000, memory_usage_mb=127, @@ -1556,7 +1556,7 @@ name="brahmairesearch/slx-v0.1", revision="688c83fd1a7f34b25575a2bc26cfd87c11b4ce71", release_date="2024-08-13", - languages=["eng_Latn"], + languages=["eng-Latn"], loader=None, n_parameters=22713216, memory_usage_mb=87, @@ -1600,7 +1600,7 @@ name="deepvk/USER-bge-m3", revision="0cc6cfe48e260fb0474c753087a69369e88709ae", release_date="2024-07-05", - languages=["rus_Cyrl"], + languages=["rus-Cyrl"], loader=None, n_parameters=359026688, memory_usage_mb=1370, @@ -1633,7 +1633,7 @@ name="infgrad/stella-base-en-v2", revision="c9e80ff9892d80b39dc54e30a7873f91ea161034", release_date="2023-10-19", - languages=["eng_Latn"], + languages=["eng-Latn"], loader=None, n_parameters=None, memory_usage_mb=None, @@ -1677,7 +1677,7 @@ name="omarelshehy/arabic-english-sts-matryoshka", revision="763d116fbe8bf7883c64635c862feeaa3768bb64", release_date="2024-10-13", - languages=["ara_Arab", "eng_Latn"], + languages=["ara-Arab", "eng-Latn"], loader=None, n_parameters=559890432, memory_usage_mb=2136, @@ -1710,7 +1710,7 @@ name="openbmb/MiniCPM-Embedding", revision="c0cb2de33fb366e17c30f9d53142ff11bc18e049", release_date="2024-09-04", - languages=["zho_Hans", "eng_Latn"], + languages=["zho-Hans", "eng-Latn"], n_parameters=2724880896, memory_usage_mb=5197, max_tokens=512.0, @@ -1732,15 +1732,15 @@ revision="6633dc49e554de7105458f8f2e96445c6598e9d1", release_date="2023-06-22", languages=[ - "zho_Hans", - "eng_Latn", - "deu_Latn", - "fra_Latn", - "ita_Latn", - "nld_Latn", - "por_Latn", - "pol_Latn", - "rus_Cyrl", + "zho-Hans", + "eng-Latn", + "deu-Latn", + "fra-Latn", + "ita-Latn", + "nld-Latn", + "por-Latn", + "pol-Latn", + "rus-Cyrl", ], loader=None, n_parameters=117654272, @@ -1764,7 +1764,7 @@ name="silma-ai/silma-embeddding-matryoshka-v0.1", revision="a520977a9542ebdb8a7206df6b7ff6977f1886ea", release_date="2024-10-12", - languages=["ara_Arab", "eng_Latn"], + languages=["ara-Arab", "eng-Latn"], loader=None, n_parameters=135193344, memory_usage_mb=516, @@ -1787,7 +1787,7 @@ name="DMetaSoul/sbert-chinese-general-v1", revision="bd27765956bcc2fcf682de0097819947ac10037e", release_date="2022-03-25", - languages=["zho_Hans"], + languages=["zho-Hans"], loader=None, n_parameters=None, memory_usage_mb=None, # Not visible on repo @@ -1813,7 +1813,7 @@ name="DMetaSoul/Dmeta-embedding-zh-small", revision="2050d3439a2f68999dd648c1697471acaac37a29", release_date="2024-03-25", - languages=["zho_Hans"], + languages=["zho-Hans"], loader=None, n_parameters=74.2 * 1e6, memory_usage_mb=283, @@ -1834,7 +1834,7 @@ name="lier007/xiaobu-embedding", revision="59c79d82eb5223cd9895f6eb8e825c7fa10e4e92", release_date="2024-01-09", - languages=["zho_Hans"], + languages=["zho-Hans"], loader=None, n_parameters=326 * 1e6, memory_usage_mb=1244, @@ -1856,7 +1856,7 @@ name="lier007/xiaobu-embedding-v2", revision="1912f2e59a5c2ef802a471d735a38702a5c9485e", release_date="2024-06-30", - languages=["zho_Hans"], + languages=["zho-Hans"], loader=None, n_parameters=326 * 1e6, memory_usage_mb=1242, @@ -1878,7 +1878,7 @@ name="Classical/Yinka", revision="59c79d82eb5223cd9895f6eb8e825c7fa10e4e92", release_date="2024-01-09", - languages=["zho_Hans"], + languages=["zho-Hans"], loader=None, n_parameters=326 * 1e6, memory_usage_mb=1244, @@ -1900,7 +1900,7 @@ name="TencentBAC/Conan-embedding-v1", revision="bb9749a57d4f02fd71722386f8d0f5a9398d7eeb", release_date="2024-08-22", - languages=["zho_Hans"], + languages=["zho-Hans"], loader=None, n_parameters=326 * 1e6, memory_usage_mb=1242, @@ -1922,7 +1922,7 @@ name="llmrails/ember-v1", revision="5e5ce5904901f6ce1c353a95020f17f09e5d021d", release_date="2023-10-10", - languages=["eng_Latn"], + languages=["eng-Latn"], n_parameters=335 * 1e6, memory_usage_mb=1278, max_tokens=512, @@ -1942,7 +1942,7 @@ name="amazon/Titan-text-embeddings-v2", revision="1", release_date="2024-04-30", - languages=["eng_Latn"], + languages=["eng-Latn"], n_parameters=None, memory_usage_mb=None, max_tokens=None, diff --git a/mteb/models/moco_models.py b/mteb/models/moco_models.py index 1383447493..b9b7928112 100644 --- a/mteb/models/moco_models.py +++ b/mteb/models/moco_models.py @@ -150,7 +150,7 @@ def get_fused_embeddings( model_name="nyu-visionx/moco-v3-vit-b", ), name="nyu-visionx/moco-v3-vit-b", - languages=["eng_Latn"], + languages=["eng-Latn"], revision="7d091cd70772c5c0ecf7f00b5f12ca609a99d69d", release_date="2024-06-03", modalities=["image"], @@ -175,7 +175,7 @@ def get_fused_embeddings( model_name="nyu-visionx/moco-v3-vit-l", ), name="nyu-visionx/moco-v3-vit-l", - languages=["eng_Latn"], + languages=["eng-Latn"], revision="7bf75358d616f39b9716148bf4e3425f3bd35b47", release_date="2024-06-03", modalities=["image"], diff --git a/mteb/models/model2vec_models.py b/mteb/models/model2vec_models.py index cbdc3c0a13..69b716f186 100644 --- a/mteb/models/model2vec_models.py +++ b/mteb/models/model2vec_models.py @@ -56,7 +56,7 @@ def encode( model_name="minishlab/M2V_base_glove_subword", ), name="minishlab/M2V_base_glove_subword", - languages=["eng_Latn"], + languages=["eng-Latn"], open_weights=True, revision="5f4f5ca159b7321a8b39739bba0794fa0debddf4", release_date="2024-09-21", @@ -83,7 +83,7 @@ def encode( model_name="minishlab/M2V_base_glove", ), name="minishlab/M2V_base_glove", - languages=["eng_Latn"], + languages=["eng-Latn"], open_weights=True, revision="38ebd7f10f71e67fa8db898290f92b82e9cfff2b", release_date="2024-09-21", @@ -109,7 +109,7 @@ def encode( model_name="minishlab/M2V_base_output", ), name="minishlab/M2V_base_output", - languages=["eng_Latn"], + languages=["eng-Latn"], open_weights=True, revision="02460ae401a22b09d2c6652e23371398329551e2", release_date="2024-09-21", @@ -135,7 +135,7 @@ def encode( model_name="minishlab/M2V_multilingual_output", ), name="minishlab/M2V_multilingual_output", - languages=["eng_Latn"], + languages=["eng-Latn"], open_weights=True, revision="2cf4ec4e1f51aeca6c55cf9b93097d00711a6305", release_date="2024-09-21", @@ -161,7 +161,7 @@ def encode( model_name="minishlab/potion-base-2M", ), name="minishlab/potion-base-2M", - languages=["eng_Latn"], + languages=["eng-Latn"], open_weights=True, revision="86db093558fbced2072b929eb1690bce5272bd4b", release_date="2024-10-29", @@ -187,7 +187,7 @@ def encode( model_name="minishlab/potion-base-4M", ), name="minishlab/potion-base-4M", - languages=["eng_Latn"], + languages=["eng-Latn"], open_weights=True, revision="81b1802ada41afcd0987a37dc15e569c9fa76f04", release_date="2024-10-29", @@ -213,7 +213,7 @@ def encode( model_name="minishlab/potion-base-8M", ), name="minishlab/potion-base-8M", - languages=["eng_Latn"], + languages=["eng-Latn"], open_weights=True, revision="dcbec7aa2d52fc76754ac6291803feedd8c619ce", release_date="2024-10-29", @@ -238,7 +238,7 @@ def encode( Model2VecWrapper, model_name="NeuML/pubmedbert-base-embeddings-100K" ), name="NeuML/pubmedbert-base-embeddings-100K", - languages=["eng_Latn"], + languages=["eng-Latn"], open_weights=True, revision="bac5e3b12fb8c650e92a19c41b436732c4f16e9e", release_date="2025-01-03", @@ -263,7 +263,7 @@ def encode( Model2VecWrapper, model_name="NeuML/pubmedbert-base-embeddings-500K" ), name="NeuML/pubmedbert-base-embeddings-500K", - languages=["eng_Latn"], + languages=["eng-Latn"], open_weights=True, revision="34ba71e35c393fdad7ed695113f653feb407b16b", release_date="2025-01-03", @@ -286,7 +286,7 @@ def encode( pubmed_bert_1m = ModelMeta( loader=partial(Model2VecWrapper, model_name="NeuML/pubmedbert-base-embeddings-1M"), name="NeuML/pubmedbert-base-embeddings-1M", - languages=["eng_Latn"], + languages=["eng-Latn"], open_weights=True, revision="2b7fed222594708da6d88bcda92ae9b434b7ddd1", release_date="2025-01-03", @@ -309,7 +309,7 @@ def encode( pubmed_bert_2m = ModelMeta( loader=partial(Model2VecWrapper, model_name="NeuML/pubmedbert-base-embeddings-2M"), name="NeuML/pubmedbert-base-embeddings-2M", - languages=["eng_Latn"], + languages=["eng-Latn"], open_weights=True, revision="1d7bbe04d6713e425161146bfdc71473cbed498a", release_date="2025-01-03", @@ -332,7 +332,7 @@ def encode( pubmed_bert_8m = ModelMeta( loader=partial(Model2VecWrapper, model_name="NeuML/pubmedbert-base-embeddings-8M"), name="NeuML/pubmedbert-base-embeddings-8M", - languages=["eng_Latn"], + languages=["eng-Latn"], open_weights=True, revision="387d350015e963744f4fafe56a574b7cd48646c9", release_date="2025-01-03", diff --git a/mteb/models/moka_models.py b/mteb/models/moka_models.py index 75103825ec..60438eaec0 100644 --- a/mteb/models/moka_models.py +++ b/mteb/models/moka_models.py @@ -84,7 +84,7 @@ m3e_base = ModelMeta( name="moka-ai/m3e-base", - languages=["zho_Hans", "eng-Latn"], + languages=["zho-Hans", "eng-Latn"], open_weights=True, revision="764b537a0e50e5c7d64db883f2d2e051cbe3c64c", release_date="2023-06-06", # first commit @@ -107,7 +107,7 @@ m3e_small = ModelMeta( name="moka-ai/m3e-small", - languages=["zho_Hans", "eng-Latn"], + languages=["zho-Hans", "eng-Latn"], open_weights=True, revision="44c696631b2a8c200220aaaad5f987f096e986df", release_date="2023-06-02", # first commit @@ -130,7 +130,7 @@ m3e_large = ModelMeta( name="moka-ai/m3e-large", - languages=["zho_Hans", "eng-Latn"], + languages=["zho-Hans", "eng-Latn"], open_weights=True, revision="12900375086c37ba5d83d1e417b21dc7d1d1f388", release_date="2023-06-21", # first commit diff --git a/mteb/models/mxbai_models.py b/mteb/models/mxbai_models.py index f3476b264e..0e8f81a3f0 100644 --- a/mteb/models/mxbai_models.py +++ b/mteb/models/mxbai_models.py @@ -23,7 +23,7 @@ }, ), name="mixedbread-ai/mxbai-embed-large-v1", - languages=["eng_Latn"], + languages=["eng-Latn"], open_weights=True, revision="990580e27d329c7408b3741ecff85876e128e203", release_date="2024-03-07", # initial commit of hf model. @@ -44,7 +44,7 @@ mxbai_embed_2d_large_v1 = ModelMeta( loader=None, name="mixedbread-ai/mxbai-embed-2d-large-v1", - languages=["eng_Latn"], + languages=["eng-Latn"], open_weights=True, revision="7e639ca8e344af398876ead3b19ec3c0b9068f49", release_date="2024-03-04", # initial commit of hf model. @@ -68,7 +68,7 @@ mxbai_embed_xsmall_v1 = ModelMeta( loader=None, name="mixedbread-ai/mxbai-embed-xsmall-v1", - languages=["eng_Latn"], + languages=["eng-Latn"], open_weights=True, revision="2f741ec33328bb57e4704e1238fc59a4a5745705", release_date="2024-08-13", # initial commit of hf model. diff --git a/mteb/models/nomic_models_vision.py b/mteb/models/nomic_models_vision.py index 661bb7aa1f..05ad575e05 100644 --- a/mteb/models/nomic_models_vision.py +++ b/mteb/models/nomic_models_vision.py @@ -167,7 +167,7 @@ def get_fused_embeddings( text_model_name="nomic-ai/nomic-embed-text-v1.5", ), name="nomic-ai/nomic-embed-vision-v1.5", - languages=["eng_Latn"], + languages=["eng-Latn"], revision="af2246fffdab78d8458418480e4886a8e48b70a7", release_date="2024-06-08", modalities=["image", "text"], diff --git a/mteb/models/nvidia_models.py b/mteb/models/nvidia_models.py index ff0f3f5ef2..d3cd2ea29b 100644 --- a/mteb/models/nvidia_models.py +++ b/mteb/models/nvidia_models.py @@ -94,7 +94,7 @@ def instruction_template( add_eos_token=True, ), name="nvidia/NV-Embed-v2", - languages=["eng_Latn"], + languages=["eng-Latn"], open_weights=True, revision="7604d305b621f14095a1aa23d351674c2859553a", release_date="2024-09-09", # initial commit of hf model. @@ -125,7 +125,7 @@ def instruction_template( add_eos_token=True, ), name="nvidia/NV-Embed-v1", - languages=["eng_Latn"], + languages=["eng-Latn"], open_weights=True, revision="570834afd5fef5bf3a3c2311a2b6e0a66f6f4f2c", release_date="2024-09-13", # initial commit of hf model. diff --git a/mteb/models/openclip_models.py b/mteb/models/openclip_models.py index 2953cfe206..7531b915f2 100644 --- a/mteb/models/openclip_models.py +++ b/mteb/models/openclip_models.py @@ -163,7 +163,7 @@ def get_fused_embeddings( model_name="laion/CLIP-ViT-L-14-DataComp.XL-s13B-b90K", ), name="laion/CLIP-ViT-L-14-DataComp.XL-s13B-b90K", - languages=["eng_Latn"], + languages=["eng-Latn"], revision="84c9828e63dc9a9351d1fe637c346d4c1c4db341", release_date="2023-04-26", modalities=["image", "text"], @@ -190,7 +190,7 @@ def get_fused_embeddings( model_name="laion/CLIP-ViT-B-32-DataComp.XL-s13B-b90K", ), name="laion/CLIP-ViT-B-32-DataComp.XL-s13B-b90K", - languages=["eng_Latn"], + languages=["eng-Latn"], revision="f0e2ffa09cbadab3db6a261ec1ec56407ce42912", release_date="2023-04-26", modalities=["image", "text"], @@ -217,7 +217,7 @@ def get_fused_embeddings( model_name="laion/CLIP-ViT-B-16-DataComp.XL-s13B-b90K", ), name="laion/CLIP-ViT-B-16-DataComp.XL-s13B-b90K", - languages=["eng_Latn"], + languages=["eng-Latn"], revision="d110532e8d4ff91c574ee60a342323f28468b287", release_date="2023-04-26", modalities=["image", "text"], @@ -244,7 +244,7 @@ def get_fused_embeddings( model_name="laion/CLIP-ViT-bigG-14-laion2B-39B-b160k", ), name="laion/CLIP-ViT-bigG-14-laion2B-39B-b160k", - languages=["eng_Latn"], + languages=["eng-Latn"], revision="bc7788f151930d91b58474715fdce5524ad9a189", release_date="2023-01-23", modalities=["image", "text"], @@ -271,7 +271,7 @@ def get_fused_embeddings( model_name="laion/CLIP-ViT-g-14-laion2B-s34B-b88K", ), name="laion/CLIP-ViT-g-14-laion2B-s34B-b88K", - languages=["eng_Latn"], + languages=["eng-Latn"], revision="15efd0f6ac0c40c0f9da7becca03c974d7012604", release_date="2023-03-06", modalities=["image", "text"], @@ -298,7 +298,7 @@ def get_fused_embeddings( model_name="laion/CLIP-ViT-H-14-laion2B-s32B-b79K", ), name="laion/CLIP-ViT-H-14-laion2B-s32B-b79K", - languages=["eng_Latn"], + languages=["eng-Latn"], revision="de081ac0a0ca8dc9d1533eed1ae884bb8ae1404b", release_date="2022-09-15", modalities=["image", "text"], @@ -325,7 +325,7 @@ def get_fused_embeddings( model_name="laion/CLIP-ViT-L-14-laion2B-s32B-b82K", ), name="laion/CLIP-ViT-L-14-laion2B-s32B-b82K", - languages=["eng_Latn"], + languages=["eng-Latn"], revision="1627032197142fbe2a7cfec626f4ced3ae60d07a", release_date="2022-09-15", modalities=["image", "text"], @@ -352,7 +352,7 @@ def get_fused_embeddings( model_name="laion/CLIP-ViT-B-32-laion2B-s34B-b79K", ), name="laion/CLIP-ViT-B-32-laion2B-s34B-b79K", - languages=["eng_Latn"], + languages=["eng-Latn"], revision="08f73555f1b2fb7c82058aebbd492887a94968ef", release_date="2022-09-15", modalities=["image", "text"], diff --git a/mteb/models/ops_moa_models.py b/mteb/models/ops_moa_models.py index 9c4d4c5e18..bbee0ba9f7 100644 --- a/mteb/models/ops_moa_models.py +++ b/mteb/models/ops_moa_models.py @@ -26,7 +26,7 @@ def encode(self, sentences: list[str], **kwargs) -> np.ndarray: name="OpenSearch-AI/Ops-MoA-Conan-embedding-v1", revision="46dcd58753f3daa920c66f89e47086a534089350", release_date="2025-03-26", - languages=["zho_Hans"], + languages=["zho-Hans"], loader=partial( CustomWrapper, "OpenSearch-AI/Ops-MoA-Conan-embedding-v1", @@ -61,7 +61,7 @@ def encode(self, sentences: list[str], **kwargs) -> np.ndarray: name="OpenSearch-AI/Ops-MoA-Yuan-embedding-1.0", revision="23712d0766417b0eb88a2513c6e212a58b543268", release_date="2025-03-26", - languages=["zho_Hans"], + languages=["zho-Hans"], loader=partial( CustomWrapper, "OpenSearch-AI/Ops-MoA-Yuan-embedding-1.0", diff --git a/mteb/models/piccolo_models.py b/mteb/models/piccolo_models.py index 4c24e9ba86..b4ffc8949a 100644 --- a/mteb/models/piccolo_models.py +++ b/mteb/models/piccolo_models.py @@ -6,7 +6,7 @@ piccolo_base_zh = ModelMeta( name="sensenova/piccolo-base-zh", - languages=["zho_Hans"], + languages=["zho-Hans"], open_weights=True, revision="47c0a63b8f667c3482e05b2fd45577bb19252196", release_date="2023-09-04", # first commit @@ -28,7 +28,7 @@ piccolo_large_zh_v2 = ModelMeta( name="sensenova/piccolo-large-zh-v2", - languages=["zho_Hans"], + languages=["zho-Hans"], open_weights=False, # They "temporarily" removed it in may last year # "Due to certain internal company considerations" revision="05948c1d889355936bdf9db7d30df57dd78d25a3", diff --git a/mteb/models/promptriever_models.py b/mteb/models/promptriever_models.py index cbed2e89c8..7e0576234b 100644 --- a/mteb/models/promptriever_models.py +++ b/mteb/models/promptriever_models.py @@ -50,7 +50,7 @@ def loader_inner(**kwargs: Any) -> Encoder: torch_dtype=torch.bfloat16, ), name="samaya-ai/promptriever-llama2-7b-v1", - languages=["eng_Latn"], + languages=["eng-Latn"], open_weights=True, revision="01c7f73d771dfac7d292323805ebc428287df4f9-30b14e3813c0fa45facfd01a594580c3fe5ecf23", # base-peft revision release_date="2024-09-15", @@ -77,7 +77,7 @@ def loader_inner(**kwargs: Any) -> Encoder: torch_dtype=torch.bfloat16, ), name="samaya-ai/promptriever-llama3.1-8b-v1", - languages=["eng_Latn"], + languages=["eng-Latn"], open_weights=True, revision="48d6d0fc4e02fb1269b36940650a1b7233035cbb-2ead22cfb1b0e0c519c371c63c2ab90ffc511b8a", # base-peft revision training_datasets={ @@ -107,7 +107,7 @@ def loader_inner(**kwargs: Any) -> Encoder: torch_dtype=torch.bfloat16, ), name="samaya-ai/promptriever-llama3.1-8b-instruct-v1", - languages=["eng_Latn"], + languages=["eng-Latn"], open_weights=True, revision="5206a32e0bd3067aef1ce90f5528ade7d866253f-8b677258615625122c2eb7329292b8c402612c21", # base-peft revision release_date="2024-09-15", @@ -137,7 +137,7 @@ def loader_inner(**kwargs: Any) -> Encoder: torch_dtype=torch.bfloat16, ), name="samaya-ai/promptriever-mistral-v0.1-7b-v1", - languages=["eng_Latn"], + languages=["eng-Latn"], open_weights=True, revision="7231864981174d9bee8c7687c24c8344414eae6b-876d63e49b6115ecb6839893a56298fadee7e8f5", # base-peft revision release_date="2024-09-15", diff --git a/mteb/models/qodo_models.py b/mteb/models/qodo_models.py index f5125c7638..693bcf6648 100644 --- a/mteb/models/qodo_models.py +++ b/mteb/models/qodo_models.py @@ -2,19 +2,22 @@ from mteb.model_meta import ModelMeta +qodo_languages = [ + "python-Code", + "c++-Code", + "c#-Code", + "go-Code", + "java-Code", + "javascript-Code", + "php-Code", + "ruby-Code", + "typescript-Code", +] + + Qodo_Embed_1_1_5B = ModelMeta( name="Qodo/Qodo-Embed-1-1.5B", - languages=[ - "python-Code", - "c++-Code", - "c#-Code", - "go-Code", - "java-Code", - "Javascript-Code", - "php-Code", - "ruby-Code", - "typescript-Code", - ], + languages=qodo_languages, open_weights=True, revision="84bbef079b32e8823ec226d4e9e92902706b0eb6", release_date="2025-02-19", @@ -35,17 +38,7 @@ Qodo_Embed_1_7B = ModelMeta( name="Qodo/Qodo-Embed-1-7B", - languages=[ - "python-Code", - "c++-Code", - "c#-Code", - "go-Code", - "java-Code", - "Javascript-Code", - "php-Code", - "ruby-Code", - "typescript-Code", - ], + languages=qodo_languages, open_weights=True, revision="f9edd9bf7f687c0e832424058e265120f603cd81", release_date="2025-02-24", diff --git a/mteb/models/qtack_models.py b/mteb/models/qtack_models.py index 4cfd43461a..662272168c 100644 --- a/mteb/models/qtack_models.py +++ b/mteb/models/qtack_models.py @@ -32,7 +32,7 @@ revision="7fbe6f9b4cc42615e0747299f837ad7769025492", ), name="prdev/mini-gte", - languages=["eng_Latn"], + languages=["eng-Latn"], open_weights=True, revision="7fbe6f9b4cc42615e0747299f837ad7769025492", release_date="2025-01-28", diff --git a/mteb/models/repllama_models.py b/mteb/models/repllama_models.py index 549f231c93..eed13cd71b 100644 --- a/mteb/models/repllama_models.py +++ b/mteb/models/repllama_models.py @@ -134,7 +134,7 @@ def loader_inner(**kwargs: Any) -> Encoder: model_prompts=model_prompts, ), name="castorini/repllama-v1-7b-lora-passage", - languages=["eng_Latn"], + languages=["eng-Latn"], open_weights=True, revision="01c7f73d771dfac7d292323805ebc428287df4f9-6097554dfe6e7d93e92f55010b678bcca1e233a8", # base-peft revision release_date="2023-10-11", @@ -166,7 +166,7 @@ def loader_inner(**kwargs: Any) -> Encoder: model_prompts=model_prompts, ), name="samaya-ai/RepLLaMA-reproduced", - languages=["eng_Latn"], + languages=["eng-Latn"], open_weights=True, revision="01c7f73d771dfac7d292323805ebc428287df4f9-ad5c1d0938a1e02954bcafb4d811ba2f34052e71", # base-peft revision release_date="2024-09-15", diff --git a/mteb/models/rerankers_custom.py b/mteb/models/rerankers_custom.py index 32a2534c0e..5363bc201f 100644 --- a/mteb/models/rerankers_custom.py +++ b/mteb/models/rerankers_custom.py @@ -203,7 +203,7 @@ def loader_inner(**kwargs: Any) -> Encoder: fp_options="float16", ), name="castorini/monobert-large-msmarco", - languages=["eng_Latn"], + languages=["eng-Latn"], open_weights=True, revision="0a97706f3827389da43b83348d5d18c9d53876fa", release_date="2020-05-28", @@ -230,7 +230,7 @@ def loader_inner(**kwargs: Any) -> Encoder: fp_options="float16", ), name="jinaai/jina-reranker-v2-base-multilingual", - languages=["eng_Latn"], + languages=["eng-Latn"], open_weights=True, revision="126747772a932960028d9f4dc93bd5d9c4869be4", release_date="2024-09-26", @@ -257,38 +257,38 @@ def loader_inner(**kwargs: Any) -> Encoder: ), name="BAAI/bge-reranker-v2-m3", languages=[ - "eng_Latn", - "ara_Arab", - "ben_Beng", - "spa_Latn", - "fas_Arab", - "fin_Latn", - "fra_Latn", - "hin_Deva", - "ind_Latn", - "jpn_Jpan", - "kor_Hang", - "rus_Cyrl", - "swa_Latn", - "tel_Telu", - "tha_Thai", - "zho_Hans", - "deu_Latn", - "yor_Latn", - "dan_Latn", - "heb_Hebr", - "hun_Latn", - "ita_Latn", - "khm_Khmr", - "msa_Latn", - "nld_Latn", - "nob_Latn", - "pol_Latn", - "por_Latn", - "swe_Latn", - "tur_Latn", - "vie_Latn", - "zho_Hant", + "eng-Latn", + "ara-Arab", + "ben-Beng", + "spa-Latn", + "fas-Arab", + "fin-Latn", + "fra-Latn", + "hin-Deva", + "ind-Latn", + "jpn-Jpan", + "kor-Hang", + "rus-Cyrl", + "swa-Latn", + "tel-Telu", + "tha-Thai", + "zho-Hans", + "deu-Latn", + "yor-Latn", + "dan-Latn", + "heb-Hebr", + "hun-Latn", + "ita-Latn", + "khm-Khmr", + "msa-Latn", + "nld-Latn", + "nob-Latn", + "pol-Latn", + "por-Latn", + "swe-Latn", + "tur-Latn", + "vie-Latn", + "zho-Hant", ], open_weights=True, revision="953dc6f6f85a1b2dbfca4c34a2796e7dde08d41e", diff --git a/mteb/models/rerankers_monot5_based.py b/mteb/models/rerankers_monot5_based.py index f94508c548..2cd4266cb6 100644 --- a/mteb/models/rerankers_monot5_based.py +++ b/mteb/models/rerankers_monot5_based.py @@ -292,7 +292,7 @@ def get_prediction_tokens(self, *args, **kwargs): fp_options="float16", ), name="castorini/monot5-small-msmarco-10k", - languages=["eng_Latn"], + languages=["eng-Latn"], open_weights=True, revision="77f8e3f7b1eb1afe353aa21a7c3a2fc8feca702e", release_date="2022-03-28", @@ -318,7 +318,7 @@ def get_prediction_tokens(self, *args, **kwargs): fp_options="float16", ), name="castorini/monot5-base-msmarco-10k", - languages=["eng_Latn"], + languages=["eng-Latn"], open_weights=True, revision="f15657ab3d2a5dd0b9a30c8c0b6a0a73c9cb5884", release_date="2022-03-28", @@ -344,7 +344,7 @@ def get_prediction_tokens(self, *args, **kwargs): fp_options="float16", ), name="castorini/monot5-large-msmarco-10k", - languages=["eng_Latn"], + languages=["eng-Latn"], open_weights=True, revision="48cfad1d8dd587670393f27ee8ec41fde63e3d98", release_date="2022-03-28", @@ -370,7 +370,7 @@ def get_prediction_tokens(self, *args, **kwargs): fp_options="float16", ), name="castorini/monot5-3b-msmarco-10k", - languages=["eng_Latn"], + languages=["eng-Latn"], open_weights=True, revision="bc0c419a438c81f592f878ce32430a1823f5db6c", release_date="2022-03-28", @@ -396,7 +396,7 @@ def get_prediction_tokens(self, *args, **kwargs): fp_options="float16", ), name="google/flan-t5-base", - languages=["eng_Latn"], + languages=["eng-Latn"], open_weights=True, revision="7bcac572ce56db69c1ea7c8af255c5d7c9672fc2", release_date="2022-10-21", @@ -433,7 +433,7 @@ def get_prediction_tokens(self, *args, **kwargs): fp_options="float16", ), name="google/flan-t5-large", - languages=["eng_Latn"], + languages=["eng-Latn"], open_weights=True, revision="0613663d0d48ea86ba8cb3d7a44f0f65dc596a2a", release_date="2022-10-21", @@ -470,7 +470,7 @@ def get_prediction_tokens(self, *args, **kwargs): fp_options="float16", ), name="google/flan-t5-xl", - languages=["eng_Latn"], + languages=["eng-Latn"], open_weights=True, revision="7d6315df2c2fb742f0f5b556879d730926ca9001", release_date="2022-10-21", @@ -507,7 +507,7 @@ def get_prediction_tokens(self, *args, **kwargs): fp_options="float16", ), name="google/flan-t5-xxl", - languages=["eng_Latn"], + languages=["eng-Latn"], open_weights=True, revision="ae7c9136adc7555eeccc78cdd960dfd60fb346ce", release_date="2022-10-21", @@ -545,7 +545,7 @@ def get_prediction_tokens(self, *args, **kwargs): fp_options="float16", ), name="meta-llama/Llama-2-7b-hf", - languages=["eng_Latn"], + languages=["eng-Latn"], open_weights=True, revision="01c7f73d771dfac7d292323805ebc428287df4f9", release_date="2023-07-18", @@ -571,7 +571,7 @@ def get_prediction_tokens(self, *args, **kwargs): fp_options="float16", ), name="meta-llama/Llama-2-7b-chat-hf", - languages=["eng_Latn"], + languages=["eng-Latn"], open_weights=True, revision="f5db02db724555f92da89c216ac04704f23d4590", release_date="2023-07-18", @@ -597,7 +597,7 @@ def get_prediction_tokens(self, *args, **kwargs): fp_options="float16", ), name="mistralai/Mistral-7B-Instruct-v0.2", - languages=["eng_Latn"], + languages=["eng-Latn"], open_weights=True, revision="3ad372fc79158a2148299e3318516c786aeded6c", release_date="2023-12-11", @@ -623,7 +623,7 @@ def get_prediction_tokens(self, *args, **kwargs): fp_options="float16", ), name="jhu-clsp/FollowIR-7B", - languages=["eng_Latn"], + languages=["eng-Latn"], open_weights=True, revision="4d25d437e38b510c01852070c0731e8f6e1875d1", release_date="2024-04-29", @@ -643,107 +643,107 @@ def get_prediction_tokens(self, *args, **kwargs): mt5_languages = [ - "afr_Latn", - "sqi_Latn", - "amh_Ethi", - "ara_Arab", - "hye_Armn", - "aze_Latn", - "eus_Latn", - "bel_Cyrl", - "ben_Beng", - "bul_Cyrl", - "mya_Mymr", - "cat_Latn", - "ceb_Latn", - "nya_Latn", - "zho_Hans", - "cos_Latn", - "ces_Latn", - "dan_Latn", - "nld_Latn", - "eng_Latn", - "epo_Latn", - "est_Latn", - "fil_Latn", - "fin_Latn", - "fra_Latn", - "glg_Latn", - "kat_Geor", - "deu_Latn", - "ell_Grek", - "guj_Gujr", - "hat_Latn", - "hau_Latn", - "haw_Latn", - "heb_Hebr", - "hin_Deva", - "hmn_Latn", - "hun_Latn", - "isl_Latn", - "ibo_Latn", - "ind_Latn", - "gle_Latn", - "ita_Latn", - "jpn_Jpan", - "jav_Latn", - "kan_Knda", - "kaz_Cyrl", - "khm_Khmr", - "kor_Hang", - "kur_Latn", - "kir_Cyrl", - "lao_Laoo", - "lat_Latn", - "lav_Latn", - "lit_Latn", - "ltz_Latn", - "mkd_Cyrl", - "mlg_Latn", - "msa_Latn", - "mal_Mlym", - "mlt_Latn", - "mri_Latn", - "mar_Deva", - "mon_Cyrl", - "nep_Deva", - "nor_Latn", - "pus_Arab", - "fas_Arab", - "pol_Latn", - "por_Latn", - "pan_Guru", - "ron_Latn", - "rus_Cyrl", - "smo_Latn", - "gla_Latn", - "srp_Cyrl", - "sna_Latn", - "snd_Arab", - "sin_Sinh", - "slk_Latn", - "slv_Latn", - "som_Latn", - "sot_Latn", - "spa_Latn", - "sun_Latn", - "swa_Latn", - "swe_Latn", - "tgk_Cyrl", - "tam_Taml", - "tel_Telu", - "tha_Thai", - "tur_Latn", - "ukr_Cyrl", - "urd_Arab", - "uzb_Latn", - "vie_Latn", - "cym_Latn", - "fry_Latn", - "xho_Latn", - "yid_Hebr", - "yor_Latn", - "zul_Latn", + "afr-Latn", + "sqi-Latn", + "amh-Ethi", + "ara-Arab", + "hye-Armn", + "aze-Latn", + "eus-Latn", + "bel-Cyrl", + "ben-Beng", + "bul-Cyrl", + "mya-Mymr", + "cat-Latn", + "ceb-Latn", + "nya-Latn", + "zho-Hans", + "cos-Latn", + "ces-Latn", + "dan-Latn", + "nld-Latn", + "eng-Latn", + "epo-Latn", + "est-Latn", + "fil-Latn", + "fin-Latn", + "fra-Latn", + "glg-Latn", + "kat-Geor", + "deu-Latn", + "ell-Grek", + "guj-Gujr", + "hat-Latn", + "hau-Latn", + "haw-Latn", + "heb-Hebr", + "hin-Deva", + "hmn-Latn", + "hun-Latn", + "isl-Latn", + "ibo-Latn", + "ind-Latn", + "gle-Latn", + "ita-Latn", + "jpn-Jpan", + "jav-Latn", + "kan-Knda", + "kaz-Cyrl", + "khm-Khmr", + "kor-Hang", + "kur-Latn", + "kir-Cyrl", + "lao-Laoo", + "lat-Latn", + "lav-Latn", + "lit-Latn", + "ltz-Latn", + "mkd-Cyrl", + "mlg-Latn", + "msa-Latn", + "mal-Mlym", + "mlt-Latn", + "mri-Latn", + "mar-Deva", + "mon-Cyrl", + "nep-Deva", + "nor-Latn", + "pus-Arab", + "fas-Arab", + "pol-Latn", + "por-Latn", + "pan-Guru", + "ron-Latn", + "rus-Cyrl", + "smo-Latn", + "gla-Latn", + "srp-Cyrl", + "sna-Latn", + "snd-Arab", + "sin-Sinh", + "slk-Latn", + "slv-Latn", + "som-Latn", + "sot-Latn", + "spa-Latn", + "sun-Latn", + "swa-Latn", + "swe-Latn", + "tgk-Cyrl", + "tam-Taml", + "tel-Telu", + "tha-Thai", + "tur-Latn", + "ukr-Cyrl", + "urd-Arab", + "uzb-Latn", + "vie-Latn", + "cym-Latn", + "fry-Latn", + "xho-Latn", + "yid-Hebr", + "yor-Latn", + "zul-Latn", ] mt5_base_mmarco_v2 = ModelMeta( diff --git a/mteb/models/richinfoai_models.py b/mteb/models/richinfoai_models.py index c46df9c378..213699893a 100644 --- a/mteb/models/richinfoai_models.py +++ b/mteb/models/richinfoai_models.py @@ -6,7 +6,7 @@ ritrieve_zh_v1 = ModelMeta( name="richinfoai/ritrieve_zh_v1", - languages=["zho_Hans"], + languages=["zho-Hans"], open_weights=True, revision="f8d5a707656c55705027678e311f9202c8ced12c", release_date="2025-03-25", diff --git a/mteb/models/ru_sentence_models.py b/mteb/models/ru_sentence_models.py index c3c63d5461..6ebd7b1538 100644 --- a/mteb/models/ru_sentence_models.py +++ b/mteb/models/ru_sentence_models.py @@ -12,7 +12,7 @@ rubert_tiny = ModelMeta( name="cointegrated/rubert-tiny", - languages=["rus_Cyrl"], + languages=["rus-Cyrl"], open_weights=True, revision="5441c5ea8026d4f6d7505ec004845409f1259fb1", release_date="2021-05-24", @@ -36,7 +36,7 @@ rubert_tiny2 = ModelMeta( name="cointegrated/rubert-tiny2", - languages=["rus_Cyrl"], + languages=["rus-Cyrl"], open_weights=True, revision="dad72b8f77c5eef6995dd3e4691b758ba56b90c3", release_date="2021-10-28", @@ -61,7 +61,7 @@ sbert_large_nlu_ru = ModelMeta( name="ai-forever/sbert_large_nlu_ru", - languages=["rus_Cyrl"], + languages=["rus-Cyrl"], open_weights=True, revision="af977d5dfa46a3635e29bf0ef383f2df2a08d47a", release_date="2020-11-20", @@ -85,7 +85,7 @@ sbert_large_mt_nlu_ru = ModelMeta( name="ai-forever/sbert_large_mt_nlu_ru", - languages=["rus_Cyrl"], + languages=["rus-Cyrl"], open_weights=True, revision="05300876c2b83f46d3ddd422a7f17e45cf633bb0", release_date="2021-05-18", @@ -114,7 +114,7 @@ model_prompts={"query": "query: ", "passage": "passage: "}, ), name="deepvk/USER-base", - languages=["rus_Cyrl"], + languages=["rus-Cyrl"], open_weights=True, revision="436a489a2087d61aa670b3496a9915f84e46c861", release_date="2024-06-10", @@ -170,7 +170,7 @@ revision="0cc6cfe48e260fb0474c753087a69369e88709ae", ), name="deepvk/USER-bge-m3", - languages=["rus_Cyrl"], + languages=["rus-Cyrl"], open_weights=True, revision="0cc6cfe48e260fb0474c753087a69369e88709ae", release_date="2024-07-05", @@ -212,7 +212,7 @@ deberta_v1_ru = ModelMeta( name="deepvk/deberta-v1-base", - languages=["rus_Cyrl"], + languages=["rus-Cyrl"], open_weights=True, revision="bdd30b0e19757e6940c92c7aff19e8fc0a60dff4", release_date="2023-02-07", @@ -241,7 +241,7 @@ rubert_base_cased = ModelMeta( name="DeepPavlov/rubert-base-cased", - languages=["rus_Cyrl"], + languages=["rus-Cyrl"], open_weights=True, revision="4036cab694767a299f2b9e6492909664d9414229", release_date="2020-03-04", @@ -266,7 +266,7 @@ distilrubert_small_cased_conversational = ModelMeta( name="DeepPavlov/distilrubert-small-cased-conversational", - languages=["rus_Cyrl"], + languages=["rus-Cyrl"], open_weights=True, revision="e348066b4a7279b97138038299bddc6580a9169a", release_date="2022-06-28", @@ -289,7 +289,7 @@ rubert_base_cased_sentence = ModelMeta( name="DeepPavlov/rubert-base-cased-sentence", - languages=["rus_Cyrl"], + languages=["rus-Cyrl"], open_weights=True, revision="78b5122d6365337dd4114281b0d08cd1edbb3bc8", release_date="2020-03-04", @@ -312,7 +312,7 @@ labse_en_ru = ModelMeta( name="cointegrated/LaBSE-en-ru", - languages=["rus_Cyrl"], + languages=["rus-Cyrl"], open_weights=True, revision="cf0714e606d4af551e14ad69a7929cd6b0da7f7e", release_date="2021-06-10", @@ -338,7 +338,7 @@ } rubert_tiny_turbo = ModelMeta( name="sergeyzh/rubert-tiny-turbo", - languages=["rus_Cyrl"], + languages=["rus-Cyrl"], open_weights=True, revision="8ce0cf757446ce9bb2d5f5a4ac8103c7a1049054", release_date="2024-06-21", @@ -359,7 +359,7 @@ rubert_mini_frida = ModelMeta( name="sergeyzh/rubert-mini-frida", - languages=["rus_Cyrl"], + languages=["rus-Cyrl"], open_weights=True, revision="19b279b78afd945b5ccae78f63e284909814adc2", release_date="2025-03-02", @@ -385,7 +385,7 @@ labse_ru_turbo = ModelMeta( name="sergeyzh/LaBSE-ru-turbo", - languages=["rus_Cyrl"], + languages=["rus-Cyrl"], open_weights=True, revision="1940b046c6b5e125df11722b899130329d0a46da", release_date="2024-06-27", @@ -406,7 +406,7 @@ berta = ModelMeta( name="sergeyzh/BERTA", - languages=["rus_Cyrl"], + languages=["rus-Cyrl"], open_weights=True, revision="914c8c8aed14042ed890fc2c662d5e9e66b2faa7", release_date="2025-03-10", @@ -461,7 +461,7 @@ model_prompts=rosberta_prompts, ), name="ai-forever/ru-en-RoSBERTa", - languages=["rus_Cyrl"], + languages=["rus-Cyrl"], open_weights=True, revision="89fb1651989adbb1cfcfdedafd7d102951ad0555", release_date="2024-07-29", @@ -617,7 +617,7 @@ model_prompts=frida_prompts, ), name="ai-forever/FRIDA", - languages=["rus_Cyrl"], + languages=["rus-Cyrl"], open_weights=True, revision="7292217af9a9e6dbf07048f76b434ad1e2aa8b76", release_date="2024-12-29", @@ -649,7 +649,7 @@ }, ), name="ai-sage/Giga-Embeddings-instruct", - languages=["eng_Latn", "rus_Cyrl"], + languages=["eng-Latn", "rus-Cyrl"], open_weights=True, revision="646f5ff3587e74a18141c8d6b60d1cffd5897b92", release_date="2024-12-13", diff --git a/mteb/models/salesforce_models.py b/mteb/models/salesforce_models.py index fdcf30e82d..ab0e230f7b 100644 --- a/mteb/models/salesforce_models.py +++ b/mteb/models/salesforce_models.py @@ -50,7 +50,7 @@ def instruction_template( normalized=True, ), name="Salesforce/SFR-Embedding-2_R", - languages=["eng_Latn"], + languages=["eng-Latn"], open_weights=True, revision="91762139d94ed4371a9fa31db5551272e0b83818", release_date="2024-06-14", # initial commit of hf model. @@ -81,7 +81,7 @@ def instruction_template( normalized=True, ), name="Salesforce/SFR-Embedding-Code-2B_R", - languages=["eng_Latn"], + languages=["eng-Latn"], open_weights=True, revision="c73d8631a005876ed5abde34db514b1fb6566973", release_date="2025-01-17", # initial commit of hf model. @@ -112,7 +112,7 @@ def instruction_template( normalized=True, ), name="Salesforce/SFR-Embedding-Mistral", - languages=["eng_Latn"], + languages=["eng-Latn"], open_weights=True, revision="938c560d1c236aa563b2dbdf084f28ab28bccb11", release_date="2024-01-24", # initial commit of hf model. diff --git a/mteb/models/searchmap_models.py b/mteb/models/searchmap_models.py index 69bb81929c..6ab3850541 100644 --- a/mteb/models/searchmap_models.py +++ b/mteb/models/searchmap_models.py @@ -24,7 +24,7 @@ ), name="VPLabs/SearchMap_Preview", revision="69de17ef48278ed08ba1a4e65ead8179912b696e", - languages=["eng_Latn"], + languages=["eng-Latn"], open_weights=True, use_instructions=True, release_date="2025-03-05", diff --git a/mteb/models/sentence_transformers_models.py b/mteb/models/sentence_transformers_models.py index dc82c0251e..d495f02594 100644 --- a/mteb/models/sentence_transformers_models.py +++ b/mteb/models/sentence_transformers_models.py @@ -8,59 +8,59 @@ from mteb.models.sentence_transformer_wrapper import SentenceTransformerWrapper paraphrase_langs = [ - "ara_Arab", - "bul_Cyrl", - "cat_Latn", - "ces_Latn", - "dan_Latn", - "deu_Latn", - "ell_Grek", - "eng_Latn", - "spa_Latn", - "est_Latn", - "fas_Arab", - "fin_Latn", - "fra_Latn", - "fra_Latn", - "glg_Latn", - "guj_Gujr", - "heb_Hebr", - "hin_Deva", - "hrv_Latn", - "hun_Latn", - "hye_Armn", - "ind_Latn", - "ita_Latn", - "jpn_Jpan", - "kat_Geor", - "kor_Hang", - "kur_Arab", - "lit_Latn", - "lav_Latn", - "mkd_Cyrl", - "mon_Cyrl", - "mar_Deva", - "msa_Latn", - "mya_Mymr", - "nob_Latn", - "nld_Latn", - "pol_Latn", - "por_Latn", - "por_Latn", - "ron_Latn", - "rus_Cyrl", - "slk_Latn", - "slv_Latn", - "sqi_Latn", - "srp_Cyrl", - "swe_Latn", - "tha_Thai", - "tur_Latn", - "ukr_Cyrl", - "urd_Arab", - "vie_Latn", - "zho_Hans", - "zho_Hant", + "ara-Arab", + "bul-Cyrl", + "cat-Latn", + "ces-Latn", + "dan-Latn", + "deu-Latn", + "ell-Grek", + "eng-Latn", + "spa-Latn", + "est-Latn", + "fas-Arab", + "fin-Latn", + "fra-Latn", + "fra-Latn", + "glg-Latn", + "guj-Gujr", + "heb-Hebr", + "hin-Deva", + "hrv-Latn", + "hun-Latn", + "hye-Armn", + "ind-Latn", + "ita-Latn", + "jpn-Jpan", + "kat-Geor", + "kor-Hang", + "kur-Arab", + "lit-Latn", + "lav-Latn", + "mkd-Cyrl", + "mon-Cyrl", + "mar-Deva", + "msa-Latn", + "mya-Mymr", + "nob-Latn", + "nld-Latn", + "pol-Latn", + "por-Latn", + "por-Latn", + "ron-Latn", + "rus-Cyrl", + "slk-Latn", + "slv-Latn", + "sqi-Latn", + "srp-Cyrl", + "swe-Latn", + "tha-Thai", + "tur-Latn", + "ukr-Cyrl", + "urd-Arab", + "vie-Latn", + "zho-Hans", + "zho-Hant", ] sent_trf_training_dataset = { @@ -294,55 +294,55 @@ # negation } static_multi_languages = [ - "eng_Latn", - "ara_Arab", - "bul_Cyrl", - "cat_Latn", - "ces_Latn", - "dan_Latn", - "deu_Latn", - "ell_Grek", - "spa_Latn", - "est_Latn", - "fas_Arab", - "fin_Latn", - "fra_Latn", - "glg_Latn", - "guj_Gujr", - "heb_Hebr", - "hin_Deva", - "hun_Latn", - "hye_Armn", - "ind_Latn", - "ita_Latn", - "jpn_Jpan", - "kat_Geor", - "kor_Hang", - "kur_Latn", - "lit_Latn", - "lav_Latn", - "mkd_Cyrl", - "mon_Cyrl", - "mar_Deva", - "mal_Mlym", - "mya_Mymr", - "nob_Latn", - "nld_Latn", - "pol_Latn", - "por_Latn", - "ron_Latn", - "rus_Cyrl", - "slk_Latn", - "slv_Latn", - "sqi_Latn", - "srp_Cyrl", - "swe_Latn", - "tha_Thai", - "tur_Latn", - "ukr_Cyrl", - "urd_Arab", - "vie_Latn", - "zho_Hans", + "eng-Latn", + "ara-Arab", + "bul-Cyrl", + "cat-Latn", + "ces-Latn", + "dan-Latn", + "deu-Latn", + "ell-Grek", + "spa-Latn", + "est-Latn", + "fas-Arab", + "fin-Latn", + "fra-Latn", + "glg-Latn", + "guj-Gujr", + "heb-Hebr", + "hin-Deva", + "hun-Latn", + "hye-Armn", + "ind-Latn", + "ita-Latn", + "jpn-Jpan", + "kat-Geor", + "kor-Hang", + "kur-Latn", + "lit-Latn", + "lav-Latn", + "mkd-Cyrl", + "mon-Cyrl", + "mar-Deva", + "mal-Mlym", + "mya-Mymr", + "nob-Latn", + "nld-Latn", + "pol-Latn", + "por-Latn", + "ron-Latn", + "rus-Cyrl", + "slk-Latn", + "slv-Latn", + "sqi-Latn", + "srp-Cyrl", + "swe-Latn", + "tha-Thai", + "tur-Latn", + "ukr-Cyrl", + "urd-Arab", + "vie-Latn", + "zho-Hans", ] static_similarity_mrl_multilingual_v1 = ModelMeta( diff --git a/mteb/models/siglip_models.py b/mteb/models/siglip_models.py index cabb3b7794..1aa85f501f 100644 --- a/mteb/models/siglip_models.py +++ b/mteb/models/siglip_models.py @@ -165,7 +165,7 @@ def get_fused_embeddings( model_name="google/siglip-so400m-patch14-224", ), name="google/siglip-so400m-patch14-224", - languages=["eng_Latn"], + languages=["eng-Latn"], revision="d04cf29fca7b6374f74d8bea1969314492266b5e", release_date="2024-01-08", modalities=["image", "text"], @@ -190,7 +190,7 @@ def get_fused_embeddings( model_name="google/siglip-so400m-patch14-384", ), name="google/siglip-so400m-patch14-384", - languages=["eng_Latn"], + languages=["eng-Latn"], revision="9fdffc58afc957d1a03a25b10dba0329ab15c2a3", release_date="2024-01-08", modalities=["image", "text"], @@ -215,7 +215,7 @@ def get_fused_embeddings( model_name="google/siglip-so400m-patch16-256-i18n", ), name="google/siglip-so400m-patch16-256-i18n", - languages=["eng_Latn"], + languages=["eng-Latn"], revision="365d321c0cfdea96bc28e3a29787a11a062681a1", release_date="2024-01-08", modalities=["image", "text"], @@ -240,7 +240,7 @@ def get_fused_embeddings( model_name="google/siglip-base-patch16-256-multilingual", ), name="google/siglip-base-patch16-256-multilingual", - languages=["eng_Latn"], + languages=["eng-Latn"], revision="8952a4eafcde3cb7ab46b1dd629b33f8784ca9c6", release_date="2024-01-08", modalities=["image", "text"], @@ -265,7 +265,7 @@ def get_fused_embeddings( model_name="google/siglip-base-patch16-256", ), name="google/siglip-base-patch16-256", - languages=["eng_Latn"], + languages=["eng-Latn"], revision="b078df89e446d623010d890864d4207fe6399f61", release_date="2024-01-08", modalities=["image", "text"], @@ -290,7 +290,7 @@ def get_fused_embeddings( model_name="google/siglip-base-patch16-512", ), name="google/siglip-base-patch16-512", - languages=["eng_Latn"], + languages=["eng-Latn"], revision="753a949581523b60257d93e18391e8c27f72eb22", release_date="2024-01-08", modalities=["image", "text"], @@ -315,7 +315,7 @@ def get_fused_embeddings( model_name="google/siglip-base-patch16-384", ), name="google/siglip-base-patch16-384", - languages=["eng_Latn"], + languages=["eng-Latn"], revision="41aec1c83b32e0a6fca20ad88ba058aa5b5ea394", release_date="2024-01-08", modalities=["image", "text"], @@ -340,7 +340,7 @@ def get_fused_embeddings( model_name="google/siglip-base-patch16-224", ), name="google/siglip-base-patch16-224", - languages=["eng_Latn"], + languages=["eng-Latn"], revision="7fd15f0689c79d79e38b1c2e2e2370a7bf2761ed", release_date="2024-01-08", modalities=["image", "text"], @@ -365,7 +365,7 @@ def get_fused_embeddings( model_name="google/siglip-large-patch16-256", ), name="google/siglip-large-patch16-256", - languages=["eng_Latn"], + languages=["eng-Latn"], revision="d0da9f876e7d66b4e250cd2450c3ba2ce735e447", release_date="2024-01-08", modalities=["image", "text"], @@ -390,7 +390,7 @@ def get_fused_embeddings( model_name="google/siglip-large-patch16-384", ), name="google/siglip-large-patch16-384", - languages=["eng_Latn"], + languages=["eng-Latn"], revision="ce005573a40965dfd21fd937fbdeeebf2439fc35", release_date="2024-01-08", modalities=["image", "text"], diff --git a/mteb/models/stella_models.py b/mteb/models/stella_models.py index 273858e3a1..83b9078ef3 100644 --- a/mteb/models/stella_models.py +++ b/mteb/models/stella_models.py @@ -52,7 +52,7 @@ torch_dtype="auto", ), name="NovaSearch/stella_en_400M_v5", - languages=["eng_Latn"], + languages=["eng-Latn"], open_weights=True, use_instructions=True, revision="1bb50bc7bb726810eac2140e62155b88b0df198f", @@ -80,7 +80,7 @@ torch_dtype="auto", ), name="NovaSearch/stella_en_1.5B_v5", - languages=["eng_Latn"], + languages=["eng-Latn"], open_weights=True, use_instructions=True, revision="d03be74b361d4eb24f42a2fe5bd2e29917df4604", @@ -100,7 +100,7 @@ stella_large_zh_v3_1792d = ModelMeta( name="dunzhang/stella-large-zh-v3-1792d", - languages=["zho_Hans"], + languages=["zho-Hans"], open_weights=True, revision="d5d39eb8cd11c80a63df53314e59997074469f09", release_date="2024-02-17", @@ -127,7 +127,7 @@ stella_base_zh_v3_1792d = ModelMeta( name="infgrad/stella-base-zh-v3-1792d", - languages=["zho_Hans"], + languages=["zho-Hans"], open_weights=True, revision="82254892a0fba125aa2abf3a4800d2dd12821343", release_date="2024-02-17", @@ -155,7 +155,7 @@ stella_mrl_large_zh_v3_5_1792d = ModelMeta( name="dunzhang/stella-mrl-large-zh-v3.5-1792d", - languages=["zho_Hans"], + languages=["zho-Hans"], open_weights=True, revision="17bb1c32a93a8fc5f6fc9e91d5ea86da99983cfe", release_date="2024-02-27", @@ -177,7 +177,7 @@ zpoint_large_embedding_zh = ModelMeta( name="iampanda/zpoint_large_embedding_zh", - languages=["zho_Hans"], + languages=["zho-Hans"], open_weights=True, revision="b1075144f440ab4409c05622c1179130ebd57d03", release_date="2024-06-04", diff --git a/mteb/models/uae_models.py b/mteb/models/uae_models.py index 6edc84c9e5..2670344bbc 100644 --- a/mteb/models/uae_models.py +++ b/mteb/models/uae_models.py @@ -62,7 +62,7 @@ def encode( }, ), name="WhereIsAI/UAE-Large-V1", - languages=["eng_Latn"], + languages=["eng-Latn"], open_weights=True, revision="369c368f70f16a613f19f5598d4f12d9f44235d4", release_date="2023-12-04", # initial commit of hf model. diff --git a/mteb/models/vdr_models.py b/mteb/models/vdr_models.py index bc1cd66c83..33a23da866 100644 --- a/mteb/models/vdr_models.py +++ b/mteb/models/vdr_models.py @@ -13,12 +13,12 @@ def instruction_template( return "{instruction}" -languages = [ - "eng_Latn", - "ita_Latn", - "fra_Latn", - "deu_Latn", - "spa_Latn", +vdr_languages = [ + "eng-Latn", + "ita-Latn", + "fra-Latn", + "deu-Latn", + "spa-Latn", ] vdr_2b_multi_v1 = ModelMeta( @@ -30,7 +30,7 @@ def instruction_template( apply_instruction_to_passages=True, ), name="llamaindex/vdr-2b-multi-v1", - languages=languages, + languages=vdr_languages, open_weights=True, revision="2c4e54c8db4071cc61fc3c62f4490124e40c37db", release_date="2024-01-08", diff --git a/mteb/models/vista_models.py b/mteb/models/vista_models.py index 0905e649ab..7f8ff80500 100644 --- a/mteb/models/vista_models.py +++ b/mteb/models/vista_models.py @@ -273,7 +273,7 @@ def calculate_probs(self, text_embeddings, image_embeddings): image_tokens_num=196, ), name="BAAI/bge-visualized-base", - languages=["eng_Latn"], + languages=["eng-Latn"], revision="98db10b10d22620010d06f11733346e1c98c34aa", release_date="2024-06-06", modalities=["image", "text"], @@ -300,7 +300,7 @@ def calculate_probs(self, text_embeddings, image_embeddings): image_tokens_num=256, ), name="BAAI/bge-visualized-m3", - languages=["eng_Latn"], + languages=["eng-Latn"], revision="98db10b10d22620010d06f11733346e1c98c34aa", release_date="2024-06-06", modalities=["image", "text"], diff --git a/mteb/models/vlm2vec_models.py b/mteb/models/vlm2vec_models.py index 70cc51cd28..65ca7b4004 100644 --- a/mteb/models/vlm2vec_models.py +++ b/mteb/models/vlm2vec_models.py @@ -380,7 +380,7 @@ def get_fused_embeddings( model_name="TIGER-Lab/VLM2Vec-LoRA", ), name="TIGER-Lab/VLM2Vec-LoRA", - languages=["eng_Latn"], + languages=["eng-Latn"], revision="7403b6327958071c1e33c822c7453adadccc7298", release_date="2024-10-08", modalities=["image", "text"], @@ -405,7 +405,7 @@ def get_fused_embeddings( model_name="TIGER-Lab/VLM2Vec-Full", ), name="TIGER-Lab/VLM2Vec-Full", - languages=["eng_Latn"], + languages=["eng-Latn"], revision="e9afa98002097ac2471827ba23ea1f2ddd229480", release_date="2024-10-08", modalities=["image", "text"], diff --git a/mteb/tasks/Image/Any2AnyRetrieval/eng/MemotionI2TRetrieval.py b/mteb/tasks/Image/Any2AnyRetrieval/eng/MemotionI2TRetrieval.py index d4ac0cd463..6102388b41 100644 --- a/mteb/tasks/Image/Any2AnyRetrieval/eng/MemotionI2TRetrieval.py +++ b/mteb/tasks/Image/Any2AnyRetrieval/eng/MemotionI2TRetrieval.py @@ -29,7 +29,7 @@ def map_function(split_name): split_datasets = {} for split in dataset_splits: split_datasets[split] = dataset[split].filter( - lambda example: example["text_corrected"] != None + lambda example: example["text_corrected"] is not None ) shared_corpus = concatenate_datasets( diff --git a/mteb/tasks/Image/Any2AnyRetrieval/eng/MemotionT2IRetrieval.py b/mteb/tasks/Image/Any2AnyRetrieval/eng/MemotionT2IRetrieval.py index 59c27e35b6..1afc30f90c 100644 --- a/mteb/tasks/Image/Any2AnyRetrieval/eng/MemotionT2IRetrieval.py +++ b/mteb/tasks/Image/Any2AnyRetrieval/eng/MemotionT2IRetrieval.py @@ -28,7 +28,7 @@ def map_function(split_name): split_datasets = {} for split in dataset_splits: split_datasets[split] = dataset[split].filter( - lambda example: example["text_corrected"] != None + lambda example: example["text_corrected"] is not None ) shared_corpus = concatenate_datasets( diff --git a/scripts/task_selection/task_selection_eu.ipynb b/scripts/task_selection/task_selection_eu.ipynb index 5191335fe8..f76aba6d51 100644 --- a/scripts/task_selection/task_selection_eu.ipynb +++ b/scripts/task_selection/task_selection_eu.ipynb @@ -5052,7 +5052,7 @@ " \n", " \n", "\n", - "

5 rows \u00d7 381 columns

\n", + "

5 rows × 381 columns

\n", "" ], "text/plain": [ @@ -5820,7 +5820,7 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": null, "metadata": {}, "outputs": [ { @@ -5834,7 +5834,7 @@ ], "source": [ "# remove code tasks\n", - "from mteb.abstasks.TaskMetadata import PROGRAMMING_LANGS\n", + "from mteb.languages import PROGRAMMING_LANGS\n", "\n", "prog_langs = set(PROGRAMMING_LANGS)\n", "\n", @@ -5967,163 +5967,163 @@ "name": "stderr", "output_type": "stream", "text": [ - "Task: STSES: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 230/230 [00:03<00:00, 58.11it/s] \n", - "Task: STSES: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 229/229 [00:03<00:00, 65.13it/s] \n", - "Task: STSES: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 228/228 [00:03<00:00, 65.85it/s] \n", - "Task: STSES: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 227/227 [00:03<00:00, 66.77it/s] \n", - "Task: STSES: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 226/226 [00:03<00:00, 68.12it/s] \n", - "Task: STSES: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 225/225 [00:03<00:00, 69.17it/s] \n", - "Task: STSES: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 224/224 [00:03<00:00, 70.26it/s] \n", - "Task: STSES: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 223/223 [00:03<00:00, 67.70it/s] \n", - "Task: STSES: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 222/222 [00:03<00:00, 69.59it/s] \n", - "Task: STSES: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 221/221 [00:03<00:00, 72.04it/s] \n", - "Task: STSES: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 220/220 [00:03<00:00, 71.93it/s] \n", - "Task: STSES: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 219/219 [00:03<00:00, 69.72it/s] \n", - "Task: STSES: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 218/218 [00:03<00:00, 71.22it/s] \n", - "Task: STSES: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 217/217 [00:03<00:00, 69.63it/s] \n", - "Task: STSES: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 216/216 [00:03<00:00, 66.60it/s] \n", - "Task: STSES: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 215/215 [00:03<00:00, 57.62it/s] \n", - "Task: STSES: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 214/214 [00:03<00:00, 71.09it/s] \n", - "Task: STSES: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 213/213 [00:02<00:00, 72.27it/s] \n", - "Task: STSES: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 212/212 [00:02<00:00, 70.97it/s] \n", - "Task: STSES: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 211/211 [00:03<00:00, 70.28it/s] \n", - "Task: STSES: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 210/210 [00:02<00:00, 70.43it/s] \n", - "Task: STSES: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 209/209 [00:02<00:00, 71.13it/s] \n", - "Task: STSES: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 208/208 [00:02<00:00, 72.55it/s] \n", - "Task: STSES: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 207/207 [00:02<00:00, 71.46it/s] \n", - "Task: STSES: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 206/206 [00:02<00:00, 69.10it/s] \n", - "Task: STSES: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 205/205 [00:02<00:00, 70.16it/s] \n", - "Task: STSES: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 204/204 [00:02<00:00, 71.04it/s] \n", - "Task: STSES: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 203/203 [00:02<00:00, 70.24it/s] \n", - "Task: STSES: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 202/202 [00:02<00:00, 70.78it/s] \n", - "Task: STSES: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 201/201 [00:03<00:00, 57.70it/s] \n", - "Task: STSES: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 200/200 [00:02<00:00, 69.66it/s] \n", - "Task: STSES: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 199/199 [00:02<00:00, 70.79it/s] \n", - "Task: STSES: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 198/198 [00:02<00:00, 70.94it/s] \n", - "Task: STSES: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 197/197 [00:02<00:00, 68.05it/s] \n", - "Task: STSES: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 196/196 [00:02<00:00, 70.72it/s] \n", - "Task: STSES: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 195/195 [00:02<00:00, 71.35it/s] \n", - "Task: STSES: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 194/194 [00:02<00:00, 70.85it/s] \n", - "Task: STSES: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 193/193 [00:02<00:00, 70.54it/s] \n", - "Task: STSES: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 192/192 [00:02<00:00, 70.73it/s] \n", - "Task: STSES: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 191/191 [00:02<00:00, 72.79it/s] \n", - "Task: STSES: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 190/190 [00:02<00:00, 71.13it/s] \n", - "Task: STSES: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 189/189 [00:02<00:00, 70.96it/s] \n", - "Task: STSES: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 188/188 [00:02<00:00, 70.87it/s] \n", - "Task: STSES: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 187/187 [00:02<00:00, 70.94it/s] \n", - "Task: STSES: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 186/186 [00:02<00:00, 71.97it/s] \n", - "Task: STSES: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 185/185 [00:02<00:00, 63.66it/s] \n", - "Task: STSES: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 184/184 [00:02<00:00, 67.47it/s] \n", - "Task: STSES: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 183/183 [00:02<00:00, 69.29it/s] \n", - "Task: STSES: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 182/182 [00:03<00:00, 55.26it/s] \n", - "Task: STSES: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 181/181 [00:02<00:00, 64.56it/s] \n", - "Task: STSES: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 180/180 [00:02<00:00, 71.62it/s] \n", - "Task: STSES: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 179/179 [00:02<00:00, 70.23it/s] \n", - "Task: STSES: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 178/178 [00:02<00:00, 66.99it/s] \n", - "Task: STSES: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 177/177 [00:02<00:00, 67.95it/s] \n", - "Task: STSES: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 176/176 [00:02<00:00, 68.18it/s] \n", - "Task: STSES: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 175/175 [00:02<00:00, 71.39it/s] \n", - "Task: STSES: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 174/174 [00:02<00:00, 68.09it/s] \n", - "Task: STSES: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 173/173 [00:02<00:00, 72.39it/s] \n", - "Task: STSES: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 172/172 [00:02<00:00, 70.68it/s] \n", - "Task: STSES: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 171/171 [00:02<00:00, 72.70it/s] \n", - "Task: STSES: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 170/170 [00:02<00:00, 71.78it/s] \n", - "Task: STSES: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 169/169 [00:02<00:00, 70.87it/s] \n", - "Task: STSES: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 168/168 [00:02<00:00, 68.98it/s] \n", - "Task: STSES: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 167/167 [00:02<00:00, 70.69it/s] \n", - "Task: STSES: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 166/166 [00:02<00:00, 71.45it/s] \n", - "Task: STSES: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 165/165 [00:02<00:00, 69.73it/s] \n", - "Task: STSES: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 164/164 [00:02<00:00, 68.91it/s] \n", - "Task: STSES: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 163/163 [00:02<00:00, 71.82it/s] \n", - "Task: STSES: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 162/162 [00:02<00:00, 68.86it/s] \n", - "Task: STSES: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 161/161 [00:02<00:00, 71.23it/s] \n", - "Task: STSES: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 160/160 [00:02<00:00, 69.43it/s] \n", - "Task: STSES: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 159/159 [00:02<00:00, 70.89it/s] \n", - "Task: STSES: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 158/158 [00:02<00:00, 68.05it/s] \n", - "Task: STSES: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 157/157 [00:02<00:00, 68.81it/s] \n", - "Task: STSES: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 156/156 [00:02<00:00, 71.06it/s] \n", - "Task: STSES: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 155/155 [00:02<00:00, 71.48it/s] \n", - "Task: STSES: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 154/154 [00:02<00:00, 71.68it/s] \n", - "Task: STSES: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 153/153 [00:02<00:00, 72.70it/s] \n", - "Task: STSES: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 152/152 [00:02<00:00, 63.73it/s] \n", - "Task: STSES: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 151/151 [00:02<00:00, 70.70it/s] \n", - "Task: STSES: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 150/150 [00:02<00:00, 67.22it/s] \n", - "Task: STSES: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 149/149 [00:02<00:00, 72.84it/s] \n", - "Task: STSES: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 148/148 [00:02<00:00, 71.82it/s] \n", - "Task: STSES: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 147/147 [00:02<00:00, 73.49it/s] \n", - "Task: STSES: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 146/146 [00:02<00:00, 72.21it/s] \n", - "Task: STSES: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 145/145 [00:01<00:00, 72.79it/s] \n", - "Task: STSES: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 144/144 [00:02<00:00, 71.98it/s] \n", - "Task: STSES: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 143/143 [00:02<00:00, 70.06it/s] \n", - "Task: STSES: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 142/142 [00:02<00:00, 69.08it/s] \n", - "Task: STSES: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 141/141 [00:01<00:00, 72.92it/s] \n", - "Task: STSES: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 140/140 [00:01<00:00, 71.44it/s] \n", - "Task: STSES: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 139/139 [00:01<00:00, 71.46it/s] \n", - "Task: STSES: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 138/138 [00:02<00:00, 67.39it/s] \n", - "Task: STSES: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 137/137 [00:01<00:00, 69.75it/s] \n", - "Task: STSES: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 136/136 [00:01<00:00, 72.94it/s] \n", - "Task: STSES: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 135/135 [00:02<00:00, 67.42it/s] \n", - "Task: STSES: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 134/134 [00:01<00:00, 71.84it/s] \n", - "Task: STSES: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 133/133 [00:01<00:00, 69.41it/s] \n", - "Task: STSES: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 132/132 [00:01<00:00, 68.70it/s] \n", - "Task: STSES: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 131/131 [00:01<00:00, 68.88it/s] \n", - "Task: STSES: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 130/130 [00:01<00:00, 70.40it/s] \n", - "Task: STSES: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 129/129 [00:01<00:00, 69.66it/s] \n", - "Task: STSES: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 128/128 [00:01<00:00, 70.44it/s] \n", - "Task: STSES: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 127/127 [00:01<00:00, 68.09it/s] \n", - "Task: STSES: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 126/126 [00:01<00:00, 68.53it/s] \n", - "Task: STSES: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 125/125 [00:01<00:00, 68.56it/s] \n", - "Task: STSES: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 124/124 [00:01<00:00, 68.90it/s] \n", - "Task: STSES: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 123/123 [00:01<00:00, 67.00it/s] \n", - "Task: STSES: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 122/122 [00:01<00:00, 68.70it/s] \n", - "Task: STSES: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 121/121 [00:01<00:00, 70.34it/s] \n", - "Task: STSES: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 120/120 [00:01<00:00, 68.90it/s] \n", - "Task: STSES: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 119/119 [00:01<00:00, 66.19it/s] \n", - "Task: STSES: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 118/118 [00:01<00:00, 67.38it/s] \n", - "Task: STSES: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 117/117 [00:01<00:00, 69.58it/s] \n", - "Task: STSES: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 116/116 [00:02<00:00, 44.92it/s] \n", - "Task: STSES: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 115/115 [00:01<00:00, 71.49it/s] \n", - "Task: STSES: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 114/114 [00:01<00:00, 68.38it/s] \n", - "Task: STSES: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 113/113 [00:01<00:00, 67.60it/s] \n", - "Task: STSES: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 112/112 [00:01<00:00, 73.36it/s] \n", - "Task: STSES: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 111/111 [00:01<00:00, 73.31it/s] \n", - "Task: STSES: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 110/110 [00:01<00:00, 72.48it/s] \n", - "Task: STSES: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 109/109 [00:01<00:00, 71.74it/s] \n", - "Task: STSES: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 108/108 [00:01<00:00, 69.22it/s] \n", - "Task: STSES: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 107/107 [00:01<00:00, 71.63it/s] \n", - "Task: STSES: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 106/106 [00:01<00:00, 64.55it/s] \n", - "Task: STSES: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 105/105 [00:01<00:00, 67.65it/s] \n", - "Task: STSES: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 104/104 [00:01<00:00, 63.04it/s] \n", - "Task: STSES: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 103/103 [00:01<00:00, 65.51it/s] \n", - "Task: STSES: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 102/102 [00:01<00:00, 67.75it/s] \n", - "Task: STSES: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 101/101 [00:01<00:00, 70.64it/s] \n", - "Task: STSES: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 100/100 [00:01<00:00, 69.18it/s] \n", - "Task: STSES: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 99/99 [00:01<00:00, 74.79it/s] \n", - "Task: STSES: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 98/98 [00:01<00:00, 70.07it/s] \n", - "Task: STSES: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 97/97 [00:01<00:00, 67.80it/s] \n", - "Task: STSES: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 96/96 [00:01<00:00, 66.15it/s] \n", - "Task: STSES: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 95/95 [00:01<00:00, 65.48it/s] \n", - "Task: STSES: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 94/94 [00:01<00:00, 63.12it/s] \n", - "Task: STSES: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 93/93 [00:01<00:00, 67.72it/s] \n", - "Task: STSES: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 92/92 [00:01<00:00, 69.74it/s] \n", - "Task: STSES: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 91/91 [00:01<00:00, 68.19it/s] \n", - "Task: STSES: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 90/90 [00:01<00:00, 60.34it/s] \n", - "Task: STSES: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 89/89 [00:01<00:00, 66.17it/s] \n", - "Task: STSES: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 88/88 [00:01<00:00, 64.67it/s] \n", - "Task: STSES: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 87/87 [00:01<00:00, 72.24it/s] \n", - "Task: STSES: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 86/86 [00:01<00:00, 74.55it/s] \n", - "Task: STSES: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 85/85 [00:01<00:00, 68.09it/s] \n", - "Task: STSES: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 84/84 [00:01<00:00, 71.94it/s] \n", - "Task: STSES: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 83/83 [00:01<00:00, 66.88it/s] \n", - "Task: STSES: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 82/82 [00:01<00:00, 68.52it/s] \n", - "Task: STSES: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 81/81 [00:01<00:00, 71.80it/s] \n", - "Task: STSES: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 80/80 [00:01<00:00, 74.02it/s] \n", - "Task: STSES: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 79/79 [00:01<00:00, 72.61it/s] \n", - "Task: STSES: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 78/78 [00:01<00:00, 67.18it/s] \n", - "Task: STSES: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 77/77 [00:01<00:00, 68.48it/s] \n", - "Task: STSES: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 76/76 [00:01<00:00, 68.82it/s] \n", - "Task: STSES: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 75/75 [00:01<00:00, 68.98it/s] \n", - "Task: STSES: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 74/74 [00:01<00:00, 65.78it/s] \n" + "Task: STSES: 100%|██████████| 230/230 [00:03<00:00, 58.11it/s] \n", + "Task: STSES: 100%|██████████| 229/229 [00:03<00:00, 65.13it/s] \n", + "Task: STSES: 100%|██████████| 228/228 [00:03<00:00, 65.85it/s] \n", + "Task: STSES: 100%|██████████| 227/227 [00:03<00:00, 66.77it/s] \n", + "Task: STSES: 100%|██████████| 226/226 [00:03<00:00, 68.12it/s] \n", + "Task: STSES: 100%|██████████| 225/225 [00:03<00:00, 69.17it/s] \n", + "Task: STSES: 100%|██████████| 224/224 [00:03<00:00, 70.26it/s] \n", + "Task: STSES: 100%|██████████| 223/223 [00:03<00:00, 67.70it/s] \n", + "Task: STSES: 100%|██████████| 222/222 [00:03<00:00, 69.59it/s] \n", + "Task: STSES: 100%|██████████| 221/221 [00:03<00:00, 72.04it/s] \n", + "Task: STSES: 100%|██████████| 220/220 [00:03<00:00, 71.93it/s] \n", + "Task: STSES: 100%|██████████| 219/219 [00:03<00:00, 69.72it/s] \n", + "Task: STSES: 100%|██████████| 218/218 [00:03<00:00, 71.22it/s] \n", + "Task: STSES: 100%|██████████| 217/217 [00:03<00:00, 69.63it/s] \n", + "Task: STSES: 100%|██████████| 216/216 [00:03<00:00, 66.60it/s] \n", + "Task: STSES: 100%|██████████| 215/215 [00:03<00:00, 57.62it/s] \n", + "Task: STSES: 100%|██████████| 214/214 [00:03<00:00, 71.09it/s] \n", + "Task: STSES: 100%|██████████| 213/213 [00:02<00:00, 72.27it/s] \n", + "Task: STSES: 100%|██████████| 212/212 [00:02<00:00, 70.97it/s] \n", + "Task: STSES: 100%|██████████| 211/211 [00:03<00:00, 70.28it/s] \n", + "Task: STSES: 100%|██████████| 210/210 [00:02<00:00, 70.43it/s] \n", + "Task: STSES: 100%|██████████| 209/209 [00:02<00:00, 71.13it/s] \n", + "Task: STSES: 100%|██████████| 208/208 [00:02<00:00, 72.55it/s] \n", + "Task: STSES: 100%|██████████| 207/207 [00:02<00:00, 71.46it/s] \n", + "Task: STSES: 100%|██████████| 206/206 [00:02<00:00, 69.10it/s] \n", + "Task: STSES: 100%|██████████| 205/205 [00:02<00:00, 70.16it/s] \n", + "Task: STSES: 100%|██████████| 204/204 [00:02<00:00, 71.04it/s] \n", + "Task: STSES: 100%|██████████| 203/203 [00:02<00:00, 70.24it/s] \n", + "Task: STSES: 100%|██████████| 202/202 [00:02<00:00, 70.78it/s] \n", + "Task: STSES: 100%|██████████| 201/201 [00:03<00:00, 57.70it/s] \n", + "Task: STSES: 100%|██████████| 200/200 [00:02<00:00, 69.66it/s] \n", + "Task: STSES: 100%|██████████| 199/199 [00:02<00:00, 70.79it/s] \n", + "Task: STSES: 100%|██████████| 198/198 [00:02<00:00, 70.94it/s] \n", + "Task: STSES: 100%|██████████| 197/197 [00:02<00:00, 68.05it/s] \n", + "Task: STSES: 100%|██████████| 196/196 [00:02<00:00, 70.72it/s] \n", + "Task: STSES: 100%|██████████| 195/195 [00:02<00:00, 71.35it/s] \n", + "Task: STSES: 100%|██████████| 194/194 [00:02<00:00, 70.85it/s] \n", + "Task: STSES: 100%|██████████| 193/193 [00:02<00:00, 70.54it/s] \n", + "Task: STSES: 100%|██████████| 192/192 [00:02<00:00, 70.73it/s] \n", + "Task: STSES: 100%|██████████| 191/191 [00:02<00:00, 72.79it/s] \n", + "Task: STSES: 100%|██████████| 190/190 [00:02<00:00, 71.13it/s] \n", + "Task: STSES: 100%|██████████| 189/189 [00:02<00:00, 70.96it/s] \n", + "Task: STSES: 100%|██████████| 188/188 [00:02<00:00, 70.87it/s] \n", + "Task: STSES: 100%|██████████| 187/187 [00:02<00:00, 70.94it/s] \n", + "Task: STSES: 100%|██████████| 186/186 [00:02<00:00, 71.97it/s] \n", + "Task: STSES: 100%|██████████| 185/185 [00:02<00:00, 63.66it/s] \n", + "Task: STSES: 100%|██████████| 184/184 [00:02<00:00, 67.47it/s] \n", + "Task: STSES: 100%|██████████| 183/183 [00:02<00:00, 69.29it/s] \n", + "Task: STSES: 100%|██████████| 182/182 [00:03<00:00, 55.26it/s] \n", + "Task: STSES: 100%|██████████| 181/181 [00:02<00:00, 64.56it/s] \n", + "Task: STSES: 100%|██████████| 180/180 [00:02<00:00, 71.62it/s] \n", + "Task: STSES: 100%|██████████| 179/179 [00:02<00:00, 70.23it/s] \n", + "Task: STSES: 100%|██████████| 178/178 [00:02<00:00, 66.99it/s] \n", + "Task: STSES: 100%|██████████| 177/177 [00:02<00:00, 67.95it/s] \n", + "Task: STSES: 100%|██████████| 176/176 [00:02<00:00, 68.18it/s] \n", + "Task: STSES: 100%|██████████| 175/175 [00:02<00:00, 71.39it/s] \n", + "Task: STSES: 100%|██████████| 174/174 [00:02<00:00, 68.09it/s] \n", + "Task: STSES: 100%|██████████| 173/173 [00:02<00:00, 72.39it/s] \n", + "Task: STSES: 100%|██████████| 172/172 [00:02<00:00, 70.68it/s] \n", + "Task: STSES: 100%|██████████| 171/171 [00:02<00:00, 72.70it/s] \n", + "Task: STSES: 100%|██████████| 170/170 [00:02<00:00, 71.78it/s] \n", + "Task: STSES: 100%|██████████| 169/169 [00:02<00:00, 70.87it/s] \n", + "Task: STSES: 100%|██████████| 168/168 [00:02<00:00, 68.98it/s] \n", + "Task: STSES: 100%|██████████| 167/167 [00:02<00:00, 70.69it/s] \n", + "Task: STSES: 100%|██████████| 166/166 [00:02<00:00, 71.45it/s] \n", + "Task: STSES: 100%|██████████| 165/165 [00:02<00:00, 69.73it/s] \n", + "Task: STSES: 100%|██████████| 164/164 [00:02<00:00, 68.91it/s] \n", + "Task: STSES: 100%|██████████| 163/163 [00:02<00:00, 71.82it/s] \n", + "Task: STSES: 100%|██████████| 162/162 [00:02<00:00, 68.86it/s] \n", + "Task: STSES: 100%|██████████| 161/161 [00:02<00:00, 71.23it/s] \n", + "Task: STSES: 100%|██████████| 160/160 [00:02<00:00, 69.43it/s] \n", + "Task: STSES: 100%|██████████| 159/159 [00:02<00:00, 70.89it/s] \n", + "Task: STSES: 100%|██████████| 158/158 [00:02<00:00, 68.05it/s] \n", + "Task: STSES: 100%|██████████| 157/157 [00:02<00:00, 68.81it/s] \n", + "Task: STSES: 100%|██████████| 156/156 [00:02<00:00, 71.06it/s] \n", + "Task: STSES: 100%|██████████| 155/155 [00:02<00:00, 71.48it/s] \n", + "Task: STSES: 100%|██████████| 154/154 [00:02<00:00, 71.68it/s] \n", + "Task: STSES: 100%|██████████| 153/153 [00:02<00:00, 72.70it/s] \n", + "Task: STSES: 100%|██████████| 152/152 [00:02<00:00, 63.73it/s] \n", + "Task: STSES: 100%|██████████| 151/151 [00:02<00:00, 70.70it/s] \n", + "Task: STSES: 100%|██████████| 150/150 [00:02<00:00, 67.22it/s] \n", + "Task: STSES: 100%|██████████| 149/149 [00:02<00:00, 72.84it/s] \n", + "Task: STSES: 100%|██████████| 148/148 [00:02<00:00, 71.82it/s] \n", + "Task: STSES: 100%|██████████| 147/147 [00:02<00:00, 73.49it/s] \n", + "Task: STSES: 100%|██████████| 146/146 [00:02<00:00, 72.21it/s] \n", + "Task: STSES: 100%|██████████| 145/145 [00:01<00:00, 72.79it/s] \n", + "Task: STSES: 100%|██████████| 144/144 [00:02<00:00, 71.98it/s] \n", + "Task: STSES: 100%|██████████| 143/143 [00:02<00:00, 70.06it/s] \n", + "Task: STSES: 100%|██████████| 142/142 [00:02<00:00, 69.08it/s] \n", + "Task: STSES: 100%|██████████| 141/141 [00:01<00:00, 72.92it/s] \n", + "Task: STSES: 100%|██████████| 140/140 [00:01<00:00, 71.44it/s] \n", + "Task: STSES: 100%|██████████| 139/139 [00:01<00:00, 71.46it/s] \n", + "Task: STSES: 100%|██████████| 138/138 [00:02<00:00, 67.39it/s] \n", + "Task: STSES: 100%|██████████| 137/137 [00:01<00:00, 69.75it/s] \n", + "Task: STSES: 100%|██████████| 136/136 [00:01<00:00, 72.94it/s] \n", + "Task: STSES: 100%|██████████| 135/135 [00:02<00:00, 67.42it/s] \n", + "Task: STSES: 100%|██████████| 134/134 [00:01<00:00, 71.84it/s] \n", + "Task: STSES: 100%|██████████| 133/133 [00:01<00:00, 69.41it/s] \n", + "Task: STSES: 100%|██████████| 132/132 [00:01<00:00, 68.70it/s] \n", + "Task: STSES: 100%|██████████| 131/131 [00:01<00:00, 68.88it/s] \n", + "Task: STSES: 100%|██████████| 130/130 [00:01<00:00, 70.40it/s] \n", + "Task: STSES: 100%|██████████| 129/129 [00:01<00:00, 69.66it/s] \n", + "Task: STSES: 100%|██████████| 128/128 [00:01<00:00, 70.44it/s] \n", + "Task: STSES: 100%|██████████| 127/127 [00:01<00:00, 68.09it/s] \n", + "Task: STSES: 100%|██████████| 126/126 [00:01<00:00, 68.53it/s] \n", + "Task: STSES: 100%|██████████| 125/125 [00:01<00:00, 68.56it/s] \n", + "Task: STSES: 100%|██████████| 124/124 [00:01<00:00, 68.90it/s] \n", + "Task: STSES: 100%|██████████| 123/123 [00:01<00:00, 67.00it/s] \n", + "Task: STSES: 100%|██████████| 122/122 [00:01<00:00, 68.70it/s] \n", + "Task: STSES: 100%|██████████| 121/121 [00:01<00:00, 70.34it/s] \n", + "Task: STSES: 100%|██████████| 120/120 [00:01<00:00, 68.90it/s] \n", + "Task: STSES: 100%|██████████| 119/119 [00:01<00:00, 66.19it/s] \n", + "Task: STSES: 100%|██████████| 118/118 [00:01<00:00, 67.38it/s] \n", + "Task: STSES: 100%|██████████| 117/117 [00:01<00:00, 69.58it/s] \n", + "Task: STSES: 100%|██████████| 116/116 [00:02<00:00, 44.92it/s] \n", + "Task: STSES: 100%|██████████| 115/115 [00:01<00:00, 71.49it/s] \n", + "Task: STSES: 100%|██████████| 114/114 [00:01<00:00, 68.38it/s] \n", + "Task: STSES: 100%|██████████| 113/113 [00:01<00:00, 67.60it/s] \n", + "Task: STSES: 100%|██████████| 112/112 [00:01<00:00, 73.36it/s] \n", + "Task: STSES: 100%|██████████| 111/111 [00:01<00:00, 73.31it/s] \n", + "Task: STSES: 100%|██████████| 110/110 [00:01<00:00, 72.48it/s] \n", + "Task: STSES: 100%|██████████| 109/109 [00:01<00:00, 71.74it/s] \n", + "Task: STSES: 100%|██████████| 108/108 [00:01<00:00, 69.22it/s] \n", + "Task: STSES: 100%|██████████| 107/107 [00:01<00:00, 71.63it/s] \n", + "Task: STSES: 100%|██████████| 106/106 [00:01<00:00, 64.55it/s] \n", + "Task: STSES: 100%|██████████| 105/105 [00:01<00:00, 67.65it/s] \n", + "Task: STSES: 100%|██████████| 104/104 [00:01<00:00, 63.04it/s] \n", + "Task: STSES: 100%|██████████| 103/103 [00:01<00:00, 65.51it/s] \n", + "Task: STSES: 100%|██████████| 102/102 [00:01<00:00, 67.75it/s] \n", + "Task: STSES: 100%|██████████| 101/101 [00:01<00:00, 70.64it/s] \n", + "Task: STSES: 100%|██████████| 100/100 [00:01<00:00, 69.18it/s] \n", + "Task: STSES: 100%|██████████| 99/99 [00:01<00:00, 74.79it/s] \n", + "Task: STSES: 100%|██████████| 98/98 [00:01<00:00, 70.07it/s] \n", + "Task: STSES: 100%|██████████| 97/97 [00:01<00:00, 67.80it/s] \n", + "Task: STSES: 100%|██████████| 96/96 [00:01<00:00, 66.15it/s] \n", + "Task: STSES: 100%|██████████| 95/95 [00:01<00:00, 65.48it/s] \n", + "Task: STSES: 100%|██████████| 94/94 [00:01<00:00, 63.12it/s] \n", + "Task: STSES: 100%|██████████| 93/93 [00:01<00:00, 67.72it/s] \n", + "Task: STSES: 100%|██████████| 92/92 [00:01<00:00, 69.74it/s] \n", + "Task: STSES: 100%|██████████| 91/91 [00:01<00:00, 68.19it/s] \n", + "Task: STSES: 100%|██████████| 90/90 [00:01<00:00, 60.34it/s] \n", + "Task: STSES: 100%|██████████| 89/89 [00:01<00:00, 66.17it/s] \n", + "Task: STSES: 100%|██████████| 88/88 [00:01<00:00, 64.67it/s] \n", + "Task: STSES: 100%|██████████| 87/87 [00:01<00:00, 72.24it/s] \n", + "Task: STSES: 100%|██████████| 86/86 [00:01<00:00, 74.55it/s] \n", + "Task: STSES: 100%|██████████| 85/85 [00:01<00:00, 68.09it/s] \n", + "Task: STSES: 100%|██████████| 84/84 [00:01<00:00, 71.94it/s] \n", + "Task: STSES: 100%|██████████| 83/83 [00:01<00:00, 66.88it/s] \n", + "Task: STSES: 100%|██████████| 82/82 [00:01<00:00, 68.52it/s] \n", + "Task: STSES: 100%|██████████| 81/81 [00:01<00:00, 71.80it/s] \n", + "Task: STSES: 100%|██████████| 80/80 [00:01<00:00, 74.02it/s] \n", + "Task: STSES: 100%|██████████| 79/79 [00:01<00:00, 72.61it/s] \n", + "Task: STSES: 100%|██████████| 78/78 [00:01<00:00, 67.18it/s] \n", + "Task: STSES: 100%|██████████| 77/77 [00:01<00:00, 68.48it/s] \n", + "Task: STSES: 100%|██████████| 76/76 [00:01<00:00, 68.82it/s] \n", + "Task: STSES: 100%|██████████| 75/75 [00:01<00:00, 68.98it/s] \n", + "Task: STSES: 100%|██████████| 74/74 [00:01<00:00, 65.78it/s] \n" ] } ], @@ -6447,7 +6447,7 @@ " {nob, nno}\n", " [Legal, Written]\n", " CC BY 4.0\n", - " Nynorsk and Bokm\u00e5l parallel corpus from Norweg...\n", + " Nynorsk and Bokmål parallel corpus from Norweg...\n", " \n", " \n", " NTREXBitextMining\n", @@ -7176,7 +7176,7 @@ " BUCC.v2 BUCC bitext mining dataset \n", " DiaBlaBitextMining English-French Parallel Corpus. DiaBLa is an E... \n", " FloresBitextMining FLORES is a benchmark dataset for machine tran... \n", - " NorwegianCourtsBitextMining Nynorsk and Bokm\u00e5l parallel corpus from Norweg... \n", + " NorwegianCourtsBitextMining Nynorsk and Bokmål parallel corpus from Norweg... \n", " NTREXBitextMining NTREX is a News Test References dataset for Ma... \n", "Classification BulgarianStoreReviewSentimentClassfication Bulgarian online store review dataset for sent... \n", " CzechProductReviewSentimentClassification User reviews of products on Czech e-shop Mall.... \n", diff --git a/scripts/task_selection/task_selection_mult.ipynb b/scripts/task_selection/task_selection_mult.ipynb index 10b36001e8..fff022d9ef 100644 --- a/scripts/task_selection/task_selection_mult.ipynb +++ b/scripts/task_selection/task_selection_mult.ipynb @@ -417,7 +417,7 @@ " \n", " \n", "\n", - "

5 rows \u00d7 507 columns

\n", + "

5 rows × 507 columns

\n", "" ], "text/plain": [ @@ -1278,7 +1278,7 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": null, "metadata": {}, "outputs": [ { @@ -1292,7 +1292,7 @@ ], "source": [ "# remove code tasks\n", - "from mteb.abstasks.TaskMetadata import PROGRAMMING_LANGS\n", + "from mteb.languages import PROGRAMMING_LANGS\n", "\n", "prog_langs = set(PROGRAMMING_LANGS)\n", "\n", @@ -1443,219 +1443,219 @@ "name": "stderr", "output_type": "stream", "text": [ - "Task: AFQMC: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 343/343 [00:06<00:00, 56.82it/s] \n", - "Task: AFQMC: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 342/342 [00:05<00:00, 64.28it/s] \n", - "Task: AFQMC: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 341/341 [00:06<00:00, 56.49it/s] \n", - "Task: AFQMC: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 340/340 [00:05<00:00, 66.81it/s] \n", - "Task: AFQMC: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 339/339 [00:05<00:00, 64.88it/s] \n", - "Task: AFQMC: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 338/338 [00:05<00:00, 66.39it/s] \n", - "Task: AFQMC: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 337/337 [00:04<00:00, 68.22it/s] \n", - "Task: AFQMC: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 336/336 [00:05<00:00, 67.12it/s] \n", - "Task: AFQMC: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 335/335 [00:05<00:00, 66.83it/s] \n", - "Task: AFQMC: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 334/334 [00:05<00:00, 57.06it/s] \n", - "Task: AFQMC: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 333/333 [00:04<00:00, 68.36it/s] \n", - "Task: AFQMC: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 332/332 [00:04<00:00, 68.10it/s] \n", - "Task: AFQMC: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 331/331 [00:04<00:00, 66.25it/s] \n", - "Task: AFQMC: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 330/330 [00:04<00:00, 68.03it/s] \n", - "Task: AFQMC: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 329/329 [00:04<00:00, 68.10it/s] \n", - "Task: AFQMC: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 328/328 [00:04<00:00, 65.64it/s] \n", - "Task: AFQMC: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 327/327 [00:04<00:00, 67.32it/s] \n", - "Task: AFQMC: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 326/326 [00:04<00:00, 67.93it/s] \n", - "Task: AFQMC: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 325/325 [00:05<00:00, 58.18it/s] \n", - "Task: AFQMC: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 324/324 [00:04<00:00, 67.08it/s] \n", - "Task: AFQMC: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 323/323 [00:04<00:00, 66.18it/s] \n", - "Task: AFQMC: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 322/322 [00:04<00:00, 67.86it/s] \n", - "Task: AFQMC: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 321/321 [00:04<00:00, 67.04it/s] \n", - "Task: AFQMC: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 320/320 [00:04<00:00, 68.59it/s] \n", - "Task: AFQMC: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 319/319 [00:04<00:00, 68.67it/s] \n", - "Task: AFQMC: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 318/318 [00:04<00:00, 67.12it/s] \n", - "Task: AFQMC: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 317/317 [00:04<00:00, 67.71it/s] \n", - "Task: AFQMC: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 316/316 [00:05<00:00, 62.77it/s] \n", - "Task: AFQMC: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 315/315 [00:04<00:00, 65.26it/s] \n", - "Task: AFQMC: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 314/314 [00:05<00:00, 55.65it/s] \n", - "Task: AFQMC: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 313/313 [00:04<00:00, 67.48it/s] \n", - "Task: AFQMC: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 312/312 [00:04<00:00, 63.58it/s] \n", - "Task: AFQMC: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 311/311 [00:04<00:00, 65.61it/s] \n", - "Task: AFQMC: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 310/310 [00:04<00:00, 66.55it/s] \n", - "Task: AFQMC: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 309/309 [00:04<00:00, 68.03it/s] \n", - "Task: AFQMC: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 308/308 [00:04<00:00, 68.36it/s] \n", - "Task: AFQMC: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 307/307 [00:04<00:00, 65.75it/s] \n", - "Task: AFQMC: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 306/306 [00:04<00:00, 65.81it/s] \n", - "Task: AFQMC: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 305/305 [00:04<00:00, 66.72it/s] \n", - "Task: AFQMC: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 304/304 [00:04<00:00, 67.30it/s] \n", - "Task: AFQMC: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 303/303 [00:04<00:00, 66.16it/s] \n", - "Task: AFQMC: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 302/302 [00:04<00:00, 65.76it/s] \n", - "Task: AFQMC: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 301/301 [00:04<00:00, 67.68it/s] \n", - "Task: AFQMC: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 300/300 [00:05<00:00, 58.06it/s] \n", - "Task: AFQMC: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 299/299 [00:04<00:00, 64.65it/s] \n", - "Task: AFQMC: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 298/298 [00:04<00:00, 64.43it/s] \n", - "Task: AFQMC: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 297/297 [00:04<00:00, 68.63it/s] \n", - "Task: AFQMC: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 296/296 [00:04<00:00, 68.91it/s] \n", - "Task: AFQMC: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 295/295 [00:04<00:00, 65.83it/s] \n", - "Task: AFQMC: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 294/294 [00:04<00:00, 67.02it/s] \n", - "Task: AFQMC: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 293/293 [00:04<00:00, 68.41it/s] \n", - "Task: AFQMC: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 292/292 [00:04<00:00, 65.20it/s] \n", - "Task: AFQMC: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 291/291 [00:04<00:00, 65.84it/s] \n", - "Task: AFQMC: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 290/290 [00:04<00:00, 66.82it/s] \n", - "Task: AFQMC: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 289/289 [00:04<00:00, 65.96it/s] \n", - "Task: AFQMC: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 288/288 [00:04<00:00, 65.71it/s] \n", - "Task: AFQMC: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 287/287 [00:04<00:00, 64.42it/s] \n", - "Task: AFQMC: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 286/286 [00:04<00:00, 64.71it/s] \n", - "Task: AFQMC: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 285/285 [00:04<00:00, 63.97it/s] \n", - "Task: AFQMC: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 284/284 [00:04<00:00, 64.96it/s] \n", - "Task: AFQMC: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 283/283 [00:04<00:00, 65.07it/s] \n", - "Task: AFQMC: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 282/282 [00:05<00:00, 54.28it/s] \n", - "Task: AFQMC: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 281/281 [00:04<00:00, 65.52it/s] \n", - "Task: AFQMC: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 280/280 [00:04<00:00, 69.12it/s] \n", - "Task: AFQMC: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 279/279 [00:04<00:00, 63.78it/s] \n", - "Task: AFQMC: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 278/278 [00:04<00:00, 61.91it/s] \n", - "Task: AFQMC: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 277/277 [00:04<00:00, 61.02it/s] \n", - "Task: AFQMC: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 276/276 [00:04<00:00, 66.39it/s] \n", - "Task: AFQMC: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 275/275 [00:04<00:00, 65.11it/s] \n", - "Task: AFQMC: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 274/274 [00:04<00:00, 60.00it/s] \n", - "Task: AFQMC: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 273/273 [00:04<00:00, 65.10it/s] \n", - "Task: AFQMC: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 272/272 [00:04<00:00, 57.70it/s] \n", - "Task: AFQMC: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 271/271 [00:04<00:00, 65.48it/s] \n", - "Task: AFQMC: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 270/270 [00:04<00:00, 65.49it/s] \n", - "Task: AFQMC: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 269/269 [00:04<00:00, 66.08it/s] \n", - "Task: AFQMC: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 268/268 [00:04<00:00, 65.38it/s] \n", - "Task: AFQMC: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 267/267 [00:04<00:00, 65.27it/s] \n", - "Task: AFQMC: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 266/266 [00:04<00:00, 63.20it/s] \n", - "Task: AFQMC: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 265/265 [00:03<00:00, 67.93it/s] \n", - "Task: AFQMC: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 264/264 [00:03<00:00, 67.03it/s] \n", - "Task: AFQMC: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 263/263 [00:03<00:00, 68.60it/s] \n", - "Task: AFQMC: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 262/262 [00:03<00:00, 68.57it/s] \n", - "Task: STSB: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 261/261 [00:03<00:00, 70.75it/s] \n", - "Task: STSB: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 260/260 [00:03<00:00, 71.17it/s] \n", - "Task: STSB: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 259/259 [00:04<00:00, 56.46it/s] \n", - "Task: STSB: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 258/258 [00:03<00:00, 69.75it/s] \n", - "Task: STSB: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 257/257 [00:03<00:00, 68.36it/s] \n", - "Task: STSB: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 256/256 [00:03<00:00, 68.55it/s] \n", - "Task: STSB: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 255/255 [00:03<00:00, 70.33it/s] \n", - "Task: STSB: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 254/254 [00:03<00:00, 68.68it/s] \n", - "Task: STSB: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 253/253 [00:03<00:00, 70.38it/s] \n", - "Task: STSB: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 252/252 [00:03<00:00, 69.20it/s] \n", - "Task: STSB: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 251/251 [00:03<00:00, 69.99it/s] \n", - "Task: STSB: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 250/250 [00:03<00:00, 70.08it/s] \n", - "Task: STSB: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 249/249 [00:03<00:00, 69.83it/s] \n", - "Task: STSB: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 248/248 [00:03<00:00, 70.24it/s] \n", - "Task: STSB: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 247/247 [00:03<00:00, 68.64it/s] \n", - "Task: STSB: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 246/246 [00:03<00:00, 72.85it/s] \n", - "Task: STSB: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 245/245 [00:03<00:00, 70.29it/s] \n", - "Task: STSB: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 244/244 [00:03<00:00, 71.00it/s] \n", - "Task: STSB: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 243/243 [00:03<00:00, 69.76it/s] \n", - "Task: STSB: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 242/242 [00:03<00:00, 68.54it/s] \n", - "Task: STSB: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 241/241 [00:03<00:00, 70.30it/s] \n", - "Task: STSB: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 240/240 [00:03<00:00, 70.76it/s] \n", - "Task: STSB: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 239/239 [00:03<00:00, 71.97it/s] \n", - "Task: STSB: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 238/238 [00:03<00:00, 71.23it/s] \n", - "Task: STSB: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 237/237 [00:03<00:00, 73.13it/s] \n", - "Task: STSB: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 236/236 [00:03<00:00, 70.82it/s] \n", - "Task: STSB: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 235/235 [00:03<00:00, 68.13it/s] \n", - "Task: STSB: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 234/234 [00:03<00:00, 71.54it/s] \n", - "Task: STSB: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 233/233 [00:03<00:00, 70.76it/s] \n", - "Task: STSB: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 232/232 [00:03<00:00, 65.94it/s] \n", - "Task: STSB: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 231/231 [00:03<00:00, 72.76it/s] \n", - "Task: STSB: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 230/230 [00:03<00:00, 66.56it/s] \n", - "Task: STSB: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 229/229 [00:04<00:00, 49.73it/s] \n", - "Task: STSB: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 228/228 [00:03<00:00, 63.18it/s] \n", - "Task: STSB: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 227/227 [00:03<00:00, 64.60it/s] \n", - "Task: STSB: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 226/226 [00:03<00:00, 66.07it/s] \n", - "Task: STSB: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 225/225 [00:03<00:00, 64.06it/s] \n", - "Task: STSB: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 224/224 [00:03<00:00, 66.15it/s] \n", - "Task: STSB: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 223/223 [00:03<00:00, 66.17it/s] \n", - "Task: STSB: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 222/222 [00:03<00:00, 66.04it/s] \n", - "Task: STSB: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 221/221 [00:03<00:00, 68.64it/s] \n", - "Task: STSB: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 220/220 [00:03<00:00, 67.44it/s] \n", - "Task: STSB: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 219/219 [00:03<00:00, 66.71it/s] \n", - "Task: STSB: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 218/218 [00:03<00:00, 71.30it/s] \n", - "Task: STSB: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 217/217 [00:02<00:00, 73.59it/s] \n", - "Task: STSB: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 216/216 [00:03<00:00, 71.73it/s] \n", - "Task: STSB: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 215/215 [00:02<00:00, 72.66it/s] \n", - "Task: STSB: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 214/214 [00:02<00:00, 72.15it/s] \n", - "Task: STSB: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 213/213 [00:02<00:00, 73.23it/s] \n", - "Task: STSB: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 212/212 [00:02<00:00, 73.01it/s] \n", - "Task: STSB: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 211/211 [00:02<00:00, 71.50it/s] \n", - "Task: STSB: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 210/210 [00:02<00:00, 70.49it/s] \n", - "Task: STSB: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 209/209 [00:02<00:00, 73.60it/s] \n", - "Task: STSB: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 208/208 [00:02<00:00, 72.94it/s] \n", - "Task: STSB: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 207/207 [00:02<00:00, 72.11it/s] \n", - "Task: STSB: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 206/206 [00:02<00:00, 72.29it/s] \n", - "Task: STSB: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 205/205 [00:02<00:00, 69.61it/s] \n", - "Task: STSB: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 204/204 [00:02<00:00, 72.55it/s] \n", - "Task: STSB: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 203/203 [00:03<00:00, 65.04it/s] \n", - "Task: STSB: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 202/202 [00:02<00:00, 73.64it/s] \n", - "Task: STSB: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 201/201 [00:02<00:00, 73.82it/s] \n", - "Task: STSB: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 200/200 [00:02<00:00, 73.79it/s] \n", - "Task: STSB: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 199/199 [00:02<00:00, 74.10it/s] \n", - "Task: STSB: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 198/198 [00:02<00:00, 74.28it/s] \n", - "Task: STSB: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 197/197 [00:02<00:00, 73.90it/s] \n", - "Task: STSB: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 196/196 [00:03<00:00, 65.18it/s] \n", - "Task: STSB: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 195/195 [00:02<00:00, 72.64it/s] \n", - "Task: STSB: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 194/194 [00:02<00:00, 73.81it/s] \n", - "Task: STSB: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 193/193 [00:02<00:00, 71.05it/s] \n", - "Task: STSB: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 192/192 [00:02<00:00, 71.45it/s] \n", - "Task: STSB: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 191/191 [00:02<00:00, 71.34it/s] \n", - "Task: STSB: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 190/190 [00:02<00:00, 69.75it/s] \n", - "Task: STSB: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 189/189 [00:02<00:00, 66.92it/s] \n", - "Task: STSB: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 188/188 [00:02<00:00, 73.07it/s] \n", - "Task: STSB: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 187/187 [00:02<00:00, 70.89it/s] \n", - "Task: STSB: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 186/186 [00:02<00:00, 71.54it/s] \n", - "Task: STSB: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 185/185 [00:03<00:00, 51.58it/s] \n", - "Task: STSB: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 184/184 [00:02<00:00, 68.09it/s] \n", - "Task: STSB: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 183/183 [00:02<00:00, 65.62it/s] \n", - "Task: STSB: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 182/182 [00:02<00:00, 65.72it/s] \n", - "Task: STSB: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 181/181 [00:02<00:00, 66.57it/s] \n", - "Task: STSB: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 180/180 [00:02<00:00, 73.13it/s] \n", - "Task: STSB: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 179/179 [00:02<00:00, 70.12it/s] \n", - "Task: STSB: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 178/178 [00:02<00:00, 69.45it/s] \n", - "Task: STSB: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 177/177 [00:02<00:00, 70.75it/s] \n", - "Task: STSB: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 176/176 [00:02<00:00, 70.95it/s] \n", - "Task: STSB: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 175/175 [00:02<00:00, 70.21it/s] \n", - "Task: STSB: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 174/174 [00:02<00:00, 70.45it/s] \n", - "Task: STSB: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 173/173 [00:02<00:00, 70.88it/s] \n", - "Task: STSB: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 172/172 [00:02<00:00, 72.59it/s] \n", - "Task: STSB: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 171/171 [00:02<00:00, 70.77it/s] \n", - "Task: STSB: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 170/170 [00:02<00:00, 69.86it/s] \n", - "Task: STSB: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 169/169 [00:02<00:00, 67.81it/s] \n", - "Task: STSB: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 168/168 [00:02<00:00, 71.31it/s] \n", - "Task: STSB: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 167/167 [00:02<00:00, 72.97it/s] \n", - "Task: STSB: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 166/166 [00:02<00:00, 68.82it/s] \n", - "Task: STSB: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 165/165 [00:02<00:00, 67.92it/s] \n", - "Task: STSB: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 164/164 [00:02<00:00, 73.44it/s] \n", - "Task: STSB: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 163/163 [00:02<00:00, 74.24it/s] \n", - "Task: STSB: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 162/162 [00:02<00:00, 72.51it/s] \n", - "Task: STSB: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 161/161 [00:02<00:00, 68.38it/s] \n", - "Task: STSB: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 160/160 [00:02<00:00, 69.13it/s] \n", - "Task: STSB: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 159/159 [00:02<00:00, 69.98it/s] \n", - "Task: STSB: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 158/158 [00:02<00:00, 71.85it/s] \n", - "Task: STSB: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 157/157 [00:02<00:00, 72.64it/s] \n", - "Task: STSB: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 156/156 [00:02<00:00, 63.16it/s] \n", - "Task: STSB: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 155/155 [00:02<00:00, 70.72it/s] \n", - "Task: STSB: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 154/154 [00:02<00:00, 69.94it/s] \n", - "Task: STSB: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 153/153 [00:02<00:00, 73.32it/s] \n", - "Task: STSB: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 152/152 [00:02<00:00, 74.71it/s] \n", - "Task: STSB: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 151/151 [00:02<00:00, 75.30it/s] \n", - "Task: STSB: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 150/150 [00:02<00:00, 74.31it/s] \n", - "Task: STSB: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 149/149 [00:01<00:00, 75.01it/s] \n", - "Task: STSB: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 148/148 [00:02<00:00, 71.96it/s] \n", - "Task: STSB: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 147/147 [00:02<00:00, 72.26it/s] \n", - "Task: STSB: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 146/146 [00:02<00:00, 71.23it/s] \n", - "Task: STSB: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 145/145 [00:02<00:00, 72.44it/s] \n", - "Task: STSB: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 144/144 [00:02<00:00, 69.16it/s] \n", - "Task: STSB: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 143/143 [00:01<00:00, 72.87it/s] \n", - "Task: STSB: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 142/142 [00:01<00:00, 72.11it/s] \n", - "Task: STSB: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 141/141 [00:02<00:00, 69.79it/s] \n", - "Task: STSB: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 140/140 [00:01<00:00, 70.98it/s] \n", - "Task: STSB: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 139/139 [00:01<00:00, 69.84it/s] \n", - "Task: STSB: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 138/138 [00:02<00:00, 68.07it/s] \n", - "Task: STSB: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 137/137 [00:02<00:00, 67.21it/s] \n", - "Task: STSB: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 136/136 [00:01<00:00, 69.94it/s] \n", - "Task: STSB: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 135/135 [00:01<00:00, 72.47it/s] \n", - "Task: STSB: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 134/134 [00:02<00:00, 66.28it/s] \n", - "Task: STSB: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 133/133 [00:01<00:00, 72.88it/s] \n", - "Task: STSB: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 132/132 [00:01<00:00, 71.74it/s] \n", - "Task: STSB: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 131/131 [00:02<00:00, 65.15it/s] \n" + "Task: AFQMC: 100%|██████████| 343/343 [00:06<00:00, 56.82it/s] \n", + "Task: AFQMC: 100%|██████████| 342/342 [00:05<00:00, 64.28it/s] \n", + "Task: AFQMC: 100%|██████████| 341/341 [00:06<00:00, 56.49it/s] \n", + "Task: AFQMC: 100%|██████████| 340/340 [00:05<00:00, 66.81it/s] \n", + "Task: AFQMC: 100%|██████████| 339/339 [00:05<00:00, 64.88it/s] \n", + "Task: AFQMC: 100%|██████████| 338/338 [00:05<00:00, 66.39it/s] \n", + "Task: AFQMC: 100%|██████████| 337/337 [00:04<00:00, 68.22it/s] \n", + "Task: AFQMC: 100%|██████████| 336/336 [00:05<00:00, 67.12it/s] \n", + "Task: AFQMC: 100%|██████████| 335/335 [00:05<00:00, 66.83it/s] \n", + "Task: AFQMC: 100%|██████████| 334/334 [00:05<00:00, 57.06it/s] \n", + "Task: AFQMC: 100%|██████████| 333/333 [00:04<00:00, 68.36it/s] \n", + "Task: AFQMC: 100%|██████████| 332/332 [00:04<00:00, 68.10it/s] \n", + "Task: AFQMC: 100%|██████████| 331/331 [00:04<00:00, 66.25it/s] \n", + "Task: AFQMC: 100%|██████████| 330/330 [00:04<00:00, 68.03it/s] \n", + "Task: AFQMC: 100%|██████████| 329/329 [00:04<00:00, 68.10it/s] \n", + "Task: AFQMC: 100%|██████████| 328/328 [00:04<00:00, 65.64it/s] \n", + "Task: AFQMC: 100%|██████████| 327/327 [00:04<00:00, 67.32it/s] \n", + "Task: AFQMC: 100%|██████████| 326/326 [00:04<00:00, 67.93it/s] \n", + "Task: AFQMC: 100%|██████████| 325/325 [00:05<00:00, 58.18it/s] \n", + "Task: AFQMC: 100%|██████████| 324/324 [00:04<00:00, 67.08it/s] \n", + "Task: AFQMC: 100%|██████████| 323/323 [00:04<00:00, 66.18it/s] \n", + "Task: AFQMC: 100%|██████████| 322/322 [00:04<00:00, 67.86it/s] \n", + "Task: AFQMC: 100%|██████████| 321/321 [00:04<00:00, 67.04it/s] \n", + "Task: AFQMC: 100%|██████████| 320/320 [00:04<00:00, 68.59it/s] \n", + "Task: AFQMC: 100%|██████████| 319/319 [00:04<00:00, 68.67it/s] \n", + "Task: AFQMC: 100%|██████████| 318/318 [00:04<00:00, 67.12it/s] \n", + "Task: AFQMC: 100%|██████████| 317/317 [00:04<00:00, 67.71it/s] \n", + "Task: AFQMC: 100%|██████████| 316/316 [00:05<00:00, 62.77it/s] \n", + "Task: AFQMC: 100%|██████████| 315/315 [00:04<00:00, 65.26it/s] \n", + "Task: AFQMC: 100%|██████████| 314/314 [00:05<00:00, 55.65it/s] \n", + "Task: AFQMC: 100%|██████████| 313/313 [00:04<00:00, 67.48it/s] \n", + "Task: AFQMC: 100%|██████████| 312/312 [00:04<00:00, 63.58it/s] \n", + "Task: AFQMC: 100%|██████████| 311/311 [00:04<00:00, 65.61it/s] \n", + "Task: AFQMC: 100%|██████████| 310/310 [00:04<00:00, 66.55it/s] \n", + "Task: AFQMC: 100%|██████████| 309/309 [00:04<00:00, 68.03it/s] \n", + "Task: AFQMC: 100%|██████████| 308/308 [00:04<00:00, 68.36it/s] \n", + "Task: AFQMC: 100%|██████████| 307/307 [00:04<00:00, 65.75it/s] \n", + "Task: AFQMC: 100%|██████████| 306/306 [00:04<00:00, 65.81it/s] \n", + "Task: AFQMC: 100%|██████████| 305/305 [00:04<00:00, 66.72it/s] \n", + "Task: AFQMC: 100%|██████████| 304/304 [00:04<00:00, 67.30it/s] \n", + "Task: AFQMC: 100%|██████████| 303/303 [00:04<00:00, 66.16it/s] \n", + "Task: AFQMC: 100%|██████████| 302/302 [00:04<00:00, 65.76it/s] \n", + "Task: AFQMC: 100%|██████████| 301/301 [00:04<00:00, 67.68it/s] \n", + "Task: AFQMC: 100%|██████████| 300/300 [00:05<00:00, 58.06it/s] \n", + "Task: AFQMC: 100%|██████████| 299/299 [00:04<00:00, 64.65it/s] \n", + "Task: AFQMC: 100%|██████████| 298/298 [00:04<00:00, 64.43it/s] \n", + "Task: AFQMC: 100%|██████████| 297/297 [00:04<00:00, 68.63it/s] \n", + "Task: AFQMC: 100%|██████████| 296/296 [00:04<00:00, 68.91it/s] \n", + "Task: AFQMC: 100%|██████████| 295/295 [00:04<00:00, 65.83it/s] \n", + "Task: AFQMC: 100%|██████████| 294/294 [00:04<00:00, 67.02it/s] \n", + "Task: AFQMC: 100%|██████████| 293/293 [00:04<00:00, 68.41it/s] \n", + "Task: AFQMC: 100%|██████████| 292/292 [00:04<00:00, 65.20it/s] \n", + "Task: AFQMC: 100%|██████████| 291/291 [00:04<00:00, 65.84it/s] \n", + "Task: AFQMC: 100%|██████████| 290/290 [00:04<00:00, 66.82it/s] \n", + "Task: AFQMC: 100%|██████████| 289/289 [00:04<00:00, 65.96it/s] \n", + "Task: AFQMC: 100%|██████████| 288/288 [00:04<00:00, 65.71it/s] \n", + "Task: AFQMC: 100%|██████████| 287/287 [00:04<00:00, 64.42it/s] \n", + "Task: AFQMC: 100%|██████████| 286/286 [00:04<00:00, 64.71it/s] \n", + "Task: AFQMC: 100%|██████████| 285/285 [00:04<00:00, 63.97it/s] \n", + "Task: AFQMC: 100%|██████████| 284/284 [00:04<00:00, 64.96it/s] \n", + "Task: AFQMC: 100%|██████████| 283/283 [00:04<00:00, 65.07it/s] \n", + "Task: AFQMC: 100%|██████████| 282/282 [00:05<00:00, 54.28it/s] \n", + "Task: AFQMC: 100%|██████████| 281/281 [00:04<00:00, 65.52it/s] \n", + "Task: AFQMC: 100%|██████████| 280/280 [00:04<00:00, 69.12it/s] \n", + "Task: AFQMC: 100%|██████████| 279/279 [00:04<00:00, 63.78it/s] \n", + "Task: AFQMC: 100%|██████████| 278/278 [00:04<00:00, 61.91it/s] \n", + "Task: AFQMC: 100%|██████████| 277/277 [00:04<00:00, 61.02it/s] \n", + "Task: AFQMC: 100%|██████████| 276/276 [00:04<00:00, 66.39it/s] \n", + "Task: AFQMC: 100%|██████████| 275/275 [00:04<00:00, 65.11it/s] \n", + "Task: AFQMC: 100%|██████████| 274/274 [00:04<00:00, 60.00it/s] \n", + "Task: AFQMC: 100%|██████████| 273/273 [00:04<00:00, 65.10it/s] \n", + "Task: AFQMC: 100%|██████████| 272/272 [00:04<00:00, 57.70it/s] \n", + "Task: AFQMC: 100%|██████████| 271/271 [00:04<00:00, 65.48it/s] \n", + "Task: AFQMC: 100%|██████████| 270/270 [00:04<00:00, 65.49it/s] \n", + "Task: AFQMC: 100%|██████████| 269/269 [00:04<00:00, 66.08it/s] \n", + "Task: AFQMC: 100%|██████████| 268/268 [00:04<00:00, 65.38it/s] \n", + "Task: AFQMC: 100%|██████████| 267/267 [00:04<00:00, 65.27it/s] \n", + "Task: AFQMC: 100%|██████████| 266/266 [00:04<00:00, 63.20it/s] \n", + "Task: AFQMC: 100%|██████████| 265/265 [00:03<00:00, 67.93it/s] \n", + "Task: AFQMC: 100%|██████████| 264/264 [00:03<00:00, 67.03it/s] \n", + "Task: AFQMC: 100%|██████████| 263/263 [00:03<00:00, 68.60it/s] \n", + "Task: AFQMC: 100%|██████████| 262/262 [00:03<00:00, 68.57it/s] \n", + "Task: STSB: 100%|██████████| 261/261 [00:03<00:00, 70.75it/s] \n", + "Task: STSB: 100%|██████████| 260/260 [00:03<00:00, 71.17it/s] \n", + "Task: STSB: 100%|██████████| 259/259 [00:04<00:00, 56.46it/s] \n", + "Task: STSB: 100%|██████████| 258/258 [00:03<00:00, 69.75it/s] \n", + "Task: STSB: 100%|██████████| 257/257 [00:03<00:00, 68.36it/s] \n", + "Task: STSB: 100%|██████████| 256/256 [00:03<00:00, 68.55it/s] \n", + "Task: STSB: 100%|██████████| 255/255 [00:03<00:00, 70.33it/s] \n", + "Task: STSB: 100%|██████████| 254/254 [00:03<00:00, 68.68it/s] \n", + "Task: STSB: 100%|██████████| 253/253 [00:03<00:00, 70.38it/s] \n", + "Task: STSB: 100%|██████████| 252/252 [00:03<00:00, 69.20it/s] \n", + "Task: STSB: 100%|██████████| 251/251 [00:03<00:00, 69.99it/s] \n", + "Task: STSB: 100%|██████████| 250/250 [00:03<00:00, 70.08it/s] \n", + "Task: STSB: 100%|██████████| 249/249 [00:03<00:00, 69.83it/s] \n", + "Task: STSB: 100%|██████████| 248/248 [00:03<00:00, 70.24it/s] \n", + "Task: STSB: 100%|██████████| 247/247 [00:03<00:00, 68.64it/s] \n", + "Task: STSB: 100%|██████████| 246/246 [00:03<00:00, 72.85it/s] \n", + "Task: STSB: 100%|██████████| 245/245 [00:03<00:00, 70.29it/s] \n", + "Task: STSB: 100%|██████████| 244/244 [00:03<00:00, 71.00it/s] \n", + "Task: STSB: 100%|██████████| 243/243 [00:03<00:00, 69.76it/s] \n", + "Task: STSB: 100%|██████████| 242/242 [00:03<00:00, 68.54it/s] \n", + "Task: STSB: 100%|██████████| 241/241 [00:03<00:00, 70.30it/s] \n", + "Task: STSB: 100%|██████████| 240/240 [00:03<00:00, 70.76it/s] \n", + "Task: STSB: 100%|██████████| 239/239 [00:03<00:00, 71.97it/s] \n", + "Task: STSB: 100%|██████████| 238/238 [00:03<00:00, 71.23it/s] \n", + "Task: STSB: 100%|██████████| 237/237 [00:03<00:00, 73.13it/s] \n", + "Task: STSB: 100%|██████████| 236/236 [00:03<00:00, 70.82it/s] \n", + "Task: STSB: 100%|██████████| 235/235 [00:03<00:00, 68.13it/s] \n", + "Task: STSB: 100%|██████████| 234/234 [00:03<00:00, 71.54it/s] \n", + "Task: STSB: 100%|██████████| 233/233 [00:03<00:00, 70.76it/s] \n", + "Task: STSB: 100%|██████████| 232/232 [00:03<00:00, 65.94it/s] \n", + "Task: STSB: 100%|██████████| 231/231 [00:03<00:00, 72.76it/s] \n", + "Task: STSB: 100%|██████████| 230/230 [00:03<00:00, 66.56it/s] \n", + "Task: STSB: 100%|██████████| 229/229 [00:04<00:00, 49.73it/s] \n", + "Task: STSB: 100%|██████████| 228/228 [00:03<00:00, 63.18it/s] \n", + "Task: STSB: 100%|██████████| 227/227 [00:03<00:00, 64.60it/s] \n", + "Task: STSB: 100%|██████████| 226/226 [00:03<00:00, 66.07it/s] \n", + "Task: STSB: 100%|██████████| 225/225 [00:03<00:00, 64.06it/s] \n", + "Task: STSB: 100%|██████████| 224/224 [00:03<00:00, 66.15it/s] \n", + "Task: STSB: 100%|██████████| 223/223 [00:03<00:00, 66.17it/s] \n", + "Task: STSB: 100%|██████████| 222/222 [00:03<00:00, 66.04it/s] \n", + "Task: STSB: 100%|██████████| 221/221 [00:03<00:00, 68.64it/s] \n", + "Task: STSB: 100%|██████████| 220/220 [00:03<00:00, 67.44it/s] \n", + "Task: STSB: 100%|██████████| 219/219 [00:03<00:00, 66.71it/s] \n", + "Task: STSB: 100%|██████████| 218/218 [00:03<00:00, 71.30it/s] \n", + "Task: STSB: 100%|██████████| 217/217 [00:02<00:00, 73.59it/s] \n", + "Task: STSB: 100%|██████████| 216/216 [00:03<00:00, 71.73it/s] \n", + "Task: STSB: 100%|██████████| 215/215 [00:02<00:00, 72.66it/s] \n", + "Task: STSB: 100%|██████████| 214/214 [00:02<00:00, 72.15it/s] \n", + "Task: STSB: 100%|██████████| 213/213 [00:02<00:00, 73.23it/s] \n", + "Task: STSB: 100%|██████████| 212/212 [00:02<00:00, 73.01it/s] \n", + "Task: STSB: 100%|██████████| 211/211 [00:02<00:00, 71.50it/s] \n", + "Task: STSB: 100%|██████████| 210/210 [00:02<00:00, 70.49it/s] \n", + "Task: STSB: 100%|██████████| 209/209 [00:02<00:00, 73.60it/s] \n", + "Task: STSB: 100%|██████████| 208/208 [00:02<00:00, 72.94it/s] \n", + "Task: STSB: 100%|██████████| 207/207 [00:02<00:00, 72.11it/s] \n", + "Task: STSB: 100%|██████████| 206/206 [00:02<00:00, 72.29it/s] \n", + "Task: STSB: 100%|██████████| 205/205 [00:02<00:00, 69.61it/s] \n", + "Task: STSB: 100%|██████████| 204/204 [00:02<00:00, 72.55it/s] \n", + "Task: STSB: 100%|██████████| 203/203 [00:03<00:00, 65.04it/s] \n", + "Task: STSB: 100%|██████████| 202/202 [00:02<00:00, 73.64it/s] \n", + "Task: STSB: 100%|██████████| 201/201 [00:02<00:00, 73.82it/s] \n", + "Task: STSB: 100%|██████████| 200/200 [00:02<00:00, 73.79it/s] \n", + "Task: STSB: 100%|██████████| 199/199 [00:02<00:00, 74.10it/s] \n", + "Task: STSB: 100%|██████████| 198/198 [00:02<00:00, 74.28it/s] \n", + "Task: STSB: 100%|██████████| 197/197 [00:02<00:00, 73.90it/s] \n", + "Task: STSB: 100%|██████████| 196/196 [00:03<00:00, 65.18it/s] \n", + "Task: STSB: 100%|██████████| 195/195 [00:02<00:00, 72.64it/s] \n", + "Task: STSB: 100%|██████████| 194/194 [00:02<00:00, 73.81it/s] \n", + "Task: STSB: 100%|██████████| 193/193 [00:02<00:00, 71.05it/s] \n", + "Task: STSB: 100%|██████████| 192/192 [00:02<00:00, 71.45it/s] \n", + "Task: STSB: 100%|██████████| 191/191 [00:02<00:00, 71.34it/s] \n", + "Task: STSB: 100%|██████████| 190/190 [00:02<00:00, 69.75it/s] \n", + "Task: STSB: 100%|██████████| 189/189 [00:02<00:00, 66.92it/s] \n", + "Task: STSB: 100%|██████████| 188/188 [00:02<00:00, 73.07it/s] \n", + "Task: STSB: 100%|██████████| 187/187 [00:02<00:00, 70.89it/s] \n", + "Task: STSB: 100%|██████████| 186/186 [00:02<00:00, 71.54it/s] \n", + "Task: STSB: 100%|██████████| 185/185 [00:03<00:00, 51.58it/s] \n", + "Task: STSB: 100%|██████████| 184/184 [00:02<00:00, 68.09it/s] \n", + "Task: STSB: 100%|██████████| 183/183 [00:02<00:00, 65.62it/s] \n", + "Task: STSB: 100%|██████████| 182/182 [00:02<00:00, 65.72it/s] \n", + "Task: STSB: 100%|██████████| 181/181 [00:02<00:00, 66.57it/s] \n", + "Task: STSB: 100%|██████████| 180/180 [00:02<00:00, 73.13it/s] \n", + "Task: STSB: 100%|██████████| 179/179 [00:02<00:00, 70.12it/s] \n", + "Task: STSB: 100%|██████████| 178/178 [00:02<00:00, 69.45it/s] \n", + "Task: STSB: 100%|██████████| 177/177 [00:02<00:00, 70.75it/s] \n", + "Task: STSB: 100%|██████████| 176/176 [00:02<00:00, 70.95it/s] \n", + "Task: STSB: 100%|██████████| 175/175 [00:02<00:00, 70.21it/s] \n", + "Task: STSB: 100%|██████████| 174/174 [00:02<00:00, 70.45it/s] \n", + "Task: STSB: 100%|██████████| 173/173 [00:02<00:00, 70.88it/s] \n", + "Task: STSB: 100%|██████████| 172/172 [00:02<00:00, 72.59it/s] \n", + "Task: STSB: 100%|██████████| 171/171 [00:02<00:00, 70.77it/s] \n", + "Task: STSB: 100%|██████████| 170/170 [00:02<00:00, 69.86it/s] \n", + "Task: STSB: 100%|██████████| 169/169 [00:02<00:00, 67.81it/s] \n", + "Task: STSB: 100%|██████████| 168/168 [00:02<00:00, 71.31it/s] \n", + "Task: STSB: 100%|██████████| 167/167 [00:02<00:00, 72.97it/s] \n", + "Task: STSB: 100%|██████████| 166/166 [00:02<00:00, 68.82it/s] \n", + "Task: STSB: 100%|██████████| 165/165 [00:02<00:00, 67.92it/s] \n", + "Task: STSB: 100%|██████████| 164/164 [00:02<00:00, 73.44it/s] \n", + "Task: STSB: 100%|██████████| 163/163 [00:02<00:00, 74.24it/s] \n", + "Task: STSB: 100%|██████████| 162/162 [00:02<00:00, 72.51it/s] \n", + "Task: STSB: 100%|██████████| 161/161 [00:02<00:00, 68.38it/s] \n", + "Task: STSB: 100%|██████████| 160/160 [00:02<00:00, 69.13it/s] \n", + "Task: STSB: 100%|██████████| 159/159 [00:02<00:00, 69.98it/s] \n", + "Task: STSB: 100%|██████████| 158/158 [00:02<00:00, 71.85it/s] \n", + "Task: STSB: 100%|██████████| 157/157 [00:02<00:00, 72.64it/s] \n", + "Task: STSB: 100%|██████████| 156/156 [00:02<00:00, 63.16it/s] \n", + "Task: STSB: 100%|██████████| 155/155 [00:02<00:00, 70.72it/s] \n", + "Task: STSB: 100%|██████████| 154/154 [00:02<00:00, 69.94it/s] \n", + "Task: STSB: 100%|██████████| 153/153 [00:02<00:00, 73.32it/s] \n", + "Task: STSB: 100%|██████████| 152/152 [00:02<00:00, 74.71it/s] \n", + "Task: STSB: 100%|██████████| 151/151 [00:02<00:00, 75.30it/s] \n", + "Task: STSB: 100%|██████████| 150/150 [00:02<00:00, 74.31it/s] \n", + "Task: STSB: 100%|██████████| 149/149 [00:01<00:00, 75.01it/s] \n", + "Task: STSB: 100%|██████████| 148/148 [00:02<00:00, 71.96it/s] \n", + "Task: STSB: 100%|██████████| 147/147 [00:02<00:00, 72.26it/s] \n", + "Task: STSB: 100%|██████████| 146/146 [00:02<00:00, 71.23it/s] \n", + "Task: STSB: 100%|██████████| 145/145 [00:02<00:00, 72.44it/s] \n", + "Task: STSB: 100%|██████████| 144/144 [00:02<00:00, 69.16it/s] \n", + "Task: STSB: 100%|██████████| 143/143 [00:01<00:00, 72.87it/s] \n", + "Task: STSB: 100%|██████████| 142/142 [00:01<00:00, 72.11it/s] \n", + "Task: STSB: 100%|██████████| 141/141 [00:02<00:00, 69.79it/s] \n", + "Task: STSB: 100%|██████████| 140/140 [00:01<00:00, 70.98it/s] \n", + "Task: STSB: 100%|██████████| 139/139 [00:01<00:00, 69.84it/s] \n", + "Task: STSB: 100%|██████████| 138/138 [00:02<00:00, 68.07it/s] \n", + "Task: STSB: 100%|██████████| 137/137 [00:02<00:00, 67.21it/s] \n", + "Task: STSB: 100%|██████████| 136/136 [00:01<00:00, 69.94it/s] \n", + "Task: STSB: 100%|██████████| 135/135 [00:01<00:00, 72.47it/s] \n", + "Task: STSB: 100%|██████████| 134/134 [00:02<00:00, 66.28it/s] \n", + "Task: STSB: 100%|██████████| 133/133 [00:01<00:00, 72.88it/s] \n", + "Task: STSB: 100%|██████████| 132/132 [00:01<00:00, 71.74it/s] \n", + "Task: STSB: 100%|██████████| 131/131 [00:02<00:00, 65.15it/s] \n" ] } ], @@ -2057,7 +2057,7 @@ " {nob, nno}\n", " [Legal, Written]\n", " CC BY 4.0\n", - " Nynorsk and Bokm\u00e5l parallel corpus from Norweg...\n", + " Nynorsk and Bokmål parallel corpus from Norweg...\n", " \n", " \n", " NTREXBitextMining\n", @@ -3338,7 +3338,7 @@ " IN22GenBitextMining IN22-Gen is a n-way parallel general-purpose m... \n", " IndicGenBenchFloresBitextMining Flores-IN dataset is an extension of Flores da... \n", " NollySentiBitextMining NollySenti is Nollywood movie reviews for five... \n", - " NorwegianCourtsBitextMining Nynorsk and Bokm\u00e5l parallel corpus from Norweg... \n", + " NorwegianCourtsBitextMining Nynorsk and Bokmål parallel corpus from Norweg... \n", " NTREXBitextMining NTREX is a News Test References dataset for Ma... \n", " NusaTranslationBitextMining NusaTranslation is a parallel dataset for mach... \n", " NusaXBitextMining NusaX is a parallel dataset for machine transl... \n", diff --git a/tests/test_benchmark/mock_models.py b/tests/test_benchmark/mock_models.py index cd14af0a0a..9600559b3e 100644 --- a/tests/test_benchmark/mock_models.py +++ b/tests/test_benchmark/mock_models.py @@ -46,7 +46,7 @@ def encode(self, sentences, prompt_name: str | None = None, **kwargs): class MockCLIPEncoder: mteb_model_meta = ModelMeta( name="mock/MockCLIPModel", - languages=["eng_Latn"], + languages=["eng-Latn"], revision="3d74acf9a28c67741b2f4f2ea7635f0aaf6f0268", release_date="2021-02-06", modalities=["image", "text"], @@ -92,7 +92,7 @@ def calculate_probs(self, text_embeddings, image_embeddings): class MockMocoEncoder: mteb_model_meta = ModelMeta( name="mock/MockMocoModel", - languages=["eng_Latn"], + languages=["eng-Latn"], revision="7d091cd70772c5c0ecf7f00b5f12ca609a99d69d", release_date="2024-01-01", modalities=["image"],