diff --git a/mteb/models/jasper_models.py b/mteb/models/jasper_models.py index 1cf0b53a54..47f2c0bd56 100644 --- a/mteb/models/jasper_models.py +++ b/mteb/models/jasper_models.py @@ -44,7 +44,7 @@ def encode( instruction = self.get_task_instruction(task_name, prompt_type) # to passage prompts won't be applied to passages - if prompt_type == PromptType.passage and task.metadata.type == "s2p": + if prompt_type == PromptType.passage and task.metadata.category == "s2p": instruction = None embeddings = self.model.encode( diff --git a/mteb/models/ru_sentence_models.py b/mteb/models/ru_sentence_models.py index ac468f47d2..d9a8bd1041 100644 --- a/mteb/models/ru_sentence_models.py +++ b/mteb/models/ru_sentence_models.py @@ -4,9 +4,12 @@ from functools import partial +import torch + from mteb.encoder_interface import PromptType from mteb.model_meta import ModelMeta, sentence_transformers_loader from mteb.models.bge_models import bge_m3_training_data +from mteb.models.instruct_wrapper import InstructSentenceTransformerWrapper rubert_tiny = ModelMeta( name="cointegrated/rubert-tiny", @@ -559,3 +562,34 @@ public_training_code=None, framework=["Sentence Transformers", "PyTorch"], ) + +giga_embeddings = ModelMeta( + loader=partial( + InstructSentenceTransformerWrapper, + model_name="ai-sage/Giga-Embeddings-instruct", + revision="646f5ff3587e74a18141c8d6b60d1cffd5897b92", + trust_remote_code=True, + instruction_template="Instruct: {instruction}\nQuery: ", + apply_instruction_to_passages=False, + model_kwargs={ + "torch_dtype": torch.bfloat16, + }, + ), + name="ai-sage/Giga-Embeddings-instruct", + languages=["eng_Latn", "rus_Cyrl"], + open_weights=True, + revision="646f5ff3587e74a18141c8d6b60d1cffd5897b92", + release_date="2024-12-13", + n_parameters=2_530_000_000, + memory_usage_mb=9649, + embed_dim=2048, + license="mit", + max_tokens=32768, + reference="https://huggingface.co/ai-sage/Giga-Embeddings-instruct", + similarity_fn_name="cosine", + framework=["Sentence Transformers", "PyTorch"], + use_instructions=True, + public_training_code=None, + public_training_data=None, + training_datasets=None, +)