-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
125 lines (103 loc) · 4.13 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import cv2
import numpy as np
import gradio as gr
# Farklı filtre fonksiyonları
def apply_gaussian_blur(frame):
return cv2.GaussianBlur(frame, (15, 15), 0)
def apply_sharpening_filter(frame):
kernel = np.array([[0, -1, 0], [-1, 5, -1], [0, -1, 0]])
return cv2.filter2D(frame, -1, kernel)
def apply_edge_detection(frame):
return cv2.Canny(frame, 100, 200)
def apply_invert_filter(frame):
return cv2.bitwise_not(frame)
def adjust_brightness_contrast(frame, alpha=1.0, beta=50):
return cv2.convertScaleAbs(frame, alpha=alpha, beta=beta)
def apply_grayscale_filter(frame):
return cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
def apply_sepia_filter(frame):
sepia_filter = np.array([[0.272, 0.534, 0.131],
[0.349, 0.686, 0.168],
[0.393, 0.769, 0.189]])
return cv2.transform(frame, sepia_filter)
def apply_fall_filter(frame):
fall_filter = np.array([[0.393, 0.769, 0.189],
[0.349, 0.686, 0.168],
[0.272, 0.534, 0.131]])
return cv2.transform(frame, fall_filter)
# Yeni filtre fonksiyonları
def apply_emboss_filter(frame):
kernel = np.array([[-2, -1, 0],
[-1, 1, 1],
[0, 1, 2]])
return cv2.filter2D(frame, -1, kernel)
def apply_sketch_filter(frame):
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
inv_gray = cv2.bitwise_not(gray)
blur = cv2.GaussianBlur(inv_gray, (21, 21), 0)
sketch = cv2.divide(gray, 255 - blur, scale=256)
return sketch
def apply_median_blur_filter(frame):
return cv2.medianBlur(frame, 15)
def adjust_contrast(frame, alpha=2.0, beta=0):
return cv2.convertScaleAbs(frame, alpha=alpha, beta=beta)
def adjust_hue(frame, delta=30):
hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
hsv[:, :, 0] = (hsv[:, :, 0] + delta) % 180
return cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR)
# Filtre uygulama fonksiyonu
def apply_filter(filter_type, input_image=None):
if input_image is not None:
frame = input_image
else:
cap = cv2.VideoCapture(0)
ret, frame = cap.read()
cap.release()
if not ret:
return "Web kameradan görüntü alınamadı"
if filter_type == "Gaussian Blur":
return apply_gaussian_blur(frame)
elif filter_type == "Sharpen":
return apply_sharpening_filter(frame)
elif filter_type == "Edge Detection":
return apply_edge_detection(frame)
elif filter_type == "Invert":
return apply_invert_filter(frame)
elif filter_type == "Brightness":
return adjust_brightness_contrast(frame, alpha=1.0, beta=50)
elif filter_type == "Grayscale":
return apply_grayscale_filter(frame)
elif filter_type == "Sepia":
return apply_sepia_filter(frame)
elif filter_type == "Sonbahar":
return apply_fall_filter(frame)
elif filter_type == "Emboss":
return apply_emboss_filter(frame)
elif filter_type == "Sketch":
return apply_sketch_filter(frame)
elif filter_type == "Median Blur":
return apply_median_blur_filter(frame)
elif filter_type == "Contrast Adjustment":
return adjust_contrast(frame, alpha=2.0, beta=0)
elif filter_type == "Hue Adjustment":
return adjust_hue(frame, delta=30)
# Gradio arayüzü
with gr.Blocks() as demo:
gr.Markdown("# Fotoğraf Filtreleme")
# Filtre seçenekleri
filter_type = gr.Dropdown(
label="Filtre Seçin",
choices=["Gaussian Blur", "Sharpen", "Edge Detection", "Invert", "Brightness", "Grayscale", "Sepia", "Sonbahar",
"Emboss", "Sketch", "Median Blur", "Contrast Adjustment", "Hue Adjustment"],
value="Gaussian Blur"
)
# Görüntü yükleme alanı
input_image = gr.Image(label="Resim Yükle", type="numpy")
# Çıktı için görüntü
output_image = gr.Image(label="Filtre Uygulandı")
# Filtre uygula butonu
apply_button = gr.Button("Filtreyi Uygula")
# Butona tıklanınca filtre uygulama fonksiyonu
apply_button.click(fn=apply_filter, inputs=[filter_type, input_image], outputs=output_image)
# Gradio arayüzünü başlat
demo.launch()