-
Notifications
You must be signed in to change notification settings - Fork 274
/
Iso.hs
578 lines (522 loc) · 18.1 KB
/
Iso.hs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
{-# LANGUAGE CPP #-}
{-# LANGUAGE Rank2Types #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE PatternSynonyms #-}
{-# LANGUAGE ViewPatterns #-}
{-# LANGUAGE Trustworthy #-}
#if __GLASGOW_HASKELL__ >= 806
{-# LANGUAGE PolyKinds #-}
#else
{-# LANGUAGE TypeInType #-}
#endif
#include "lens-common.h"
-----------------------------------------------------------------------------
-- |
-- Module : Control.Lens.Iso
-- Copyright : (C) 2012-16 Edward Kmett
-- License : BSD-style (see the file LICENSE)
-- Maintainer : Edward Kmett <[email protected]>
-- Stability : provisional
-- Portability : Rank2Types, TypeFamilies, FunctionalDependencies
--
----------------------------------------------------------------------------
module Control.Lens.Iso
(
-- * Isomorphism Lenses
Iso, Iso'
, AnIso, AnIso'
-- * Isomorphism Construction
, iso
-- * Consuming Isomorphisms
, from
, cloneIso
, withIso
-- * Working with isomorphisms
, au
, auf
, xplat
, xplatf
, under
, mapping
-- ** Common Isomorphisms
, simple
, non, non'
, anon
, enum
, curried, uncurried
, flipped
, swapped
, pattern Swapped
, strict, lazy
, pattern Strict
, pattern Lazy
, Reversing(..)
, reversed
, pattern Reversed
, involuted
, pattern List
-- ** Uncommon Isomorphisms
, magma
, imagma
, Magma
-- ** Contravariant functors
, contramapping
-- * Profunctors
, Profunctor(dimap,rmap,lmap)
, dimapping
, lmapping
, rmapping
-- * Bifunctors
, bimapping
, firsting
, seconding
-- * Coercions
, coerced
) where
import Control.Lens.Equality (simple)
import Control.Lens.Getter
import Control.Lens.Fold
import Control.Lens.Internal.Context
import Control.Lens.Internal.Indexed
import Control.Lens.Internal.Iso as Iso
import Control.Lens.Internal.Magma
import Control.Lens.Prism
import Control.Lens.Review
import Control.Lens.Type
import Data.Bifunctor
import Data.Bifunctor.Swap (Swap (..))
import Data.Functor.Identity
import Data.Strict.Classes (Strict (..))
import Data.Maybe
import Data.Profunctor
import Data.Profunctor.Unsafe
import Data.Coerce
import qualified GHC.Exts as Exts
import GHC.Exts (TYPE)
-- $setup
-- >>> :set -XNoOverloadedStrings
-- >>> import Control.Lens
-- >>> import qualified Data.Map as Map
-- >>> import Data.Foldable
-- >>> import Data.Monoid
----------------------------------------------------------------------------
-- Isomorphisms
-----------------------------------------------------------------------------
-- | When you see this as an argument to a function, it expects an 'Iso'.
type AnIso s t a b = Exchange a b a (Identity b) -> Exchange a b s (Identity t)
-- | A 'Simple' 'AnIso'.
type AnIso' s a = AnIso s s a a
-- | Build a simple isomorphism from a pair of inverse functions.
--
-- @
-- 'Control.Lens.Getter.view' ('iso' f g) ≡ f
-- 'Control.Lens.Getter.view' ('Control.Lens.Iso.from' ('iso' f g)) ≡ g
-- 'Control.Lens.Setter.over' ('iso' f g) h ≡ g '.' h '.' f
-- 'Control.Lens.Setter.over' ('Control.Lens.Iso.from' ('iso' f g)) h ≡ f '.' h '.' g
-- @
iso :: (s -> a) -> (b -> t) -> Iso s t a b
iso sa bt = dimap sa (fmap bt)
{-# INLINE iso #-}
----------------------------------------------------------------------------
-- Consuming Isomorphisms
-----------------------------------------------------------------------------
-- | Invert an isomorphism.
--
-- @
-- 'from' ('from' l) ≡ l
-- @
from :: AnIso s t a b -> Iso b a t s
from l = withIso l $ \sa bt -> iso bt sa
{-# INLINE from #-}
-- | Extract the two functions, one from @s -> a@ and
-- one from @b -> t@ that characterize an 'Iso'.
withIso :: forall s t a b rep (r :: TYPE rep).
AnIso s t a b -> ((s -> a) -> (b -> t) -> r) -> r
withIso ai k = case ai (Exchange id Identity) of
Exchange sa bt -> k sa (runIdentity #. bt)
{-# INLINE withIso #-}
-- | Convert from 'AnIso' back to any 'Iso'.
--
-- This is useful when you need to store an isomorphism as a data type inside a container
-- and later reconstitute it as an overloaded function.
--
-- See 'Control.Lens.Lens.cloneLens' or 'Control.Lens.Traversal.cloneTraversal' for more information on why you might want to do this.
cloneIso :: AnIso s t a b -> Iso s t a b
cloneIso k = withIso k $ \sa bt -> iso sa bt
{-# INLINE cloneIso #-}
-----------------------------------------------------------------------------
-- Isomorphisms families as Lenses
-----------------------------------------------------------------------------
-- | Based on 'Control.Lens.Wrapped.ala' from Conor McBride's work on Epigram.
--
-- This version is generalized to accept any 'Iso', not just a @newtype@.
--
-- >>> au (_Wrapping Sum) foldMap [1,2,3,4]
-- 10
--
-- You may want to think of this combinator as having the following, simpler type:
--
-- @
-- au :: AnIso s t a b -> ((b -> t) -> e -> s) -> e -> a
-- @
--
-- @
-- au = xplat . from
-- @
au :: Functor f => AnIso s t a b -> ((b -> t) -> f s) -> f a
au k = withIso k $ \ sa bt f -> fmap sa (f bt)
{-# INLINE au #-}
-- | Based on @ala'@ from Conor McBride's work on Epigram.
--
-- This version is generalized to accept any 'Iso', not just a @newtype@.
--
-- For a version you pass the name of the @newtype@ constructor to, see 'Control.Lens.Wrapped.alaf'.
--
-- >>> auf (_Wrapping Sum) (foldMapOf both) Prelude.length ("hello","world")
-- 10
--
-- Mnemonically, the German /auf/ plays a similar role to /à la/, and the combinator
-- is 'au' with an extra function argument:
--
-- @
-- 'auf' :: 'Iso' s t a b -> ((r -> t) -> e -> s) -> (r -> b) -> e -> a
-- @
--
-- but the signature is general.
--
-- Note: The direction of the 'Iso' required for this function changed in @lens@ 4.18 to match up
-- with the behavior of 'au'. For the old behavior use 'xplatf' or for a version that is compatible
-- across both old and new versions of @lens@ you can just use 'coerce'!
auf :: (Functor f, Functor g) => AnIso s t a b -> (f t -> g s) -> f b -> g a
auf k ftgs fb = withIso k $ \sa bt -> sa <$> ftgs (bt <$> fb)
{-# INLINE auf #-}
-- | @'xplat' = 'au' . 'from'@ but with a nicer signature.
xplat :: Optic (Costar ((->) s)) g s t a b -> ((s -> a) -> g b) -> g t
xplat f g = xplatf f g id
-- | @'xplatf' = 'auf' . 'from'@ but with a nicer signature.
--
-- >>> xplatf (_Unwrapping Sum) (foldMapOf both) Prelude.length ("hello","world")
-- 10
--
-- @
-- 'xplatf' :: 'Iso' s t a b -> ((r -> a) -> e -> b) -> (r -> s) -> e -> t
-- @
xplatf :: Optic (Costar f) g s t a b -> (f a -> g b) -> f s -> g t
xplatf = coerce
{-# INLINE xplat #-}
-- | The opposite of working 'Control.Lens.Setter.over' a 'Setter' is working 'under' an isomorphism.
--
-- @
-- 'under' ≡ 'Control.Lens.Setter.over' '.' 'from'
-- @
--
-- @
-- 'under' :: 'Iso' s t a b -> (t -> s) -> b -> a
-- @
under :: AnIso s t a b -> (t -> s) -> b -> a
under k = withIso k $ \ sa bt ts -> sa . ts . bt
{-# INLINE under #-}
-----------------------------------------------------------------------------
-- Isomorphisms
-----------------------------------------------------------------------------
-- | This isomorphism can be used to convert to or from an instance of 'Enum'.
--
-- >>> LT^.from enum
-- 0
--
-- >>> 97^.enum :: Char
-- 'a'
--
-- Note: this is only an isomorphism from the numeric range actually used
-- and it is a bit of a pleasant fiction, since there are questionable
-- 'Enum' instances for 'Double', and 'Float' that exist solely for
-- @[1.0 .. 4.0]@ sugar and the instances for those and 'Integer' don't
-- cover all values in their range.
enum :: Enum a => Iso' Int a
enum = iso toEnum fromEnum
{-# INLINE enum #-}
-- | This can be used to lift any 'Iso' into an arbitrary 'Functor'.
mapping :: (Functor f, Functor g) => AnIso s t a b -> Iso (f s) (g t) (f a) (g b)
mapping k = withIso k $ \ sa bt -> iso (fmap sa) (fmap bt)
{-# INLINE mapping #-}
-- | If @v@ is an element of a type @a@, and @a'@ is @a@ sans the element @v@, then @'non' v@ is an isomorphism from
-- @'Maybe' a'@ to @a@.
--
-- @
-- 'non' ≡ 'non'' '.' 'only'
-- @
--
-- Keep in mind this is only a real isomorphism if you treat the domain as being @'Maybe' (a sans v)@.
--
-- This is practically quite useful when you want to have a 'Data.Map.Map' where all the entries should have non-zero values.
--
-- >>> Map.fromList [("hello",1)] & at "hello" . non 0 +~ 2
-- fromList [("hello",3)]
--
-- >>> Map.fromList [("hello",1)] & at "hello" . non 0 -~ 1
-- fromList []
--
-- >>> Map.fromList [("hello",1)] ^. at "hello" . non 0
-- 1
--
-- >>> Map.fromList [] ^. at "hello" . non 0
-- 0
--
-- This combinator is also particularly useful when working with nested maps.
--
-- /e.g./ When you want to create the nested 'Data.Map.Map' when it is missing:
--
-- >>> Map.empty & at "hello" . non Map.empty . at "world" ?~ "!!!"
-- fromList [("hello",fromList [("world","!!!")])]
--
-- and when have deleting the last entry from the nested 'Data.Map.Map' mean that we
-- should delete its entry from the surrounding one:
--
-- >>> Map.fromList [("hello",Map.fromList [("world","!!!")])] & at "hello" . non Map.empty . at "world" .~ Nothing
-- fromList []
--
-- It can also be used in reverse to exclude a given value:
--
-- >>> non 0 # rem 10 4
-- Just 2
--
-- >>> non 0 # rem 10 5
-- Nothing
non :: Eq a => a -> Iso' (Maybe a) a
non a = non' $ only a
{-# INLINE non #-}
-- | @'non'' p@ generalizes @'non' (p # ())@ to take any unit 'Prism'
--
-- This function generates an isomorphism between @'Maybe' (a | 'isn't' p a)@ and @a@.
--
-- >>> Map.singleton "hello" Map.empty & at "hello" . non' _Empty . at "world" ?~ "!!!"
-- fromList [("hello",fromList [("world","!!!")])]
--
-- >>> Map.fromList [("hello",Map.fromList [("world","!!!")])] & at "hello" . non' _Empty . at "world" .~ Nothing
-- fromList []
non' :: APrism' a () -> Iso' (Maybe a) a
non' p = iso (fromMaybe def) go where
def = review (clonePrism p) ()
go b | has (clonePrism p) b = Nothing
| otherwise = Just b
{-# INLINE non' #-}
-- | @'anon' a p@ generalizes @'non' a@ to take any value and a predicate.
--
-- This function assumes that @p a@ holds @'True'@ and generates an isomorphism between @'Maybe' (a | 'not' (p a))@ and @a@.
--
-- >>> Map.empty & at "hello" . anon Map.empty Map.null . at "world" ?~ "!!!"
-- fromList [("hello",fromList [("world","!!!")])]
--
-- >>> Map.fromList [("hello",Map.fromList [("world","!!!")])] & at "hello" . anon Map.empty Map.null . at "world" .~ Nothing
-- fromList []
anon :: a -> (a -> Bool) -> Iso' (Maybe a) a
anon a p = iso (fromMaybe a) go where
go b | p b = Nothing
| otherwise = Just b
{-# INLINE anon #-}
-- | The canonical isomorphism for currying and uncurrying a function.
--
-- @
-- 'curried' = 'iso' 'curry' 'uncurry'
-- @
--
-- >>> (fst^.curried) 3 4
-- 3
--
-- >>> view curried fst 3 4
-- 3
curried :: Iso ((a,b) -> c) ((d,e) -> f) (a -> b -> c) (d -> e -> f)
curried = iso curry uncurry
{-# INLINE curried #-}
-- | The canonical isomorphism for uncurrying and currying a function.
--
-- @
-- 'uncurried' = 'iso' 'uncurry' 'curry'
-- @
--
-- @
-- 'uncurried' = 'from' 'curried'
-- @
--
-- >>> ((+)^.uncurried) (1,2)
-- 3
uncurried :: Iso (a -> b -> c) (d -> e -> f) ((a,b) -> c) ((d,e) -> f)
uncurried = iso uncurry curry
{-# INLINE uncurried #-}
-- | The isomorphism for flipping a function.
--
-- >>>((,)^.flipped) 1 2
-- (2,1)
flipped :: Iso (a -> b -> c) (a' -> b' -> c') (b -> a -> c) (b' -> a' -> c')
flipped = iso flip flip
{-# INLINE flipped #-}
-- |
-- @
-- 'swapped' '.' 'swapped' ≡ 'id'
-- 'first' f '.' 'swapped' = 'swapped' '.' 'second' f
-- 'second' g '.' 'swapped' = 'swapped' '.' 'first' g
-- 'bimap' f g '.' 'swapped' = 'swapped' '.' 'bimap' g f
-- @
--
-- >>> (1,2)^.swapped
-- (2,1)
swapped :: Swap p => Iso (p a b) (p c d) (p b a) (p d c)
swapped = iso swap swap
{-# INLINE swapped #-}
-- | An 'Iso' between the lazy variant of a structure and its strict
-- counterpart.
--
-- @
-- 'strict' = 'from' 'lazy'
-- @
strict :: Strict lazy strict => Iso' lazy strict
strict = iso toStrict toLazy
{-# INLINE strict #-}
pattern Strict :: Strict s t => t -> s
pattern Strict a <- (view strict -> a) where
Strict a = review strict a
pattern Lazy :: Strict t s => t -> s
pattern Lazy a <- (view lazy -> a) where
Lazy a = review lazy a
pattern Swapped :: Swap p => p b a -> p a b
pattern Swapped a <- (view swapped -> a) where
Swapped a = review swapped a
pattern Reversed :: Reversing t => t -> t
pattern Reversed a <- (view reversed -> a) where
Reversed a = review reversed a
-- | An 'Iso' between the strict variant of a structure and its lazy
-- counterpart.
--
-- @
-- 'lazy' = 'from' 'strict'
-- @
--
lazy :: Strict lazy strict => Iso' strict lazy
lazy = iso toLazy toStrict
{-# INLINE lazy #-}
-- | An 'Iso' between a list, 'ByteString', 'Text' fragment, etc. and its reversal.
--
-- >>> "live" ^. reversed
-- "evil"
--
-- >>> "live" & reversed %~ ('d':)
-- "lived"
reversed :: Reversing a => Iso' a a
reversed = involuted Iso.reversing
-- | Given a function that is its own inverse, this gives you an 'Iso' using it in both directions.
--
-- @
-- 'involuted' ≡ 'Control.Monad.join' 'iso'
-- @
--
-- >>> "live" ^. involuted reverse
-- "evil"
--
-- >>> "live" & involuted reverse %~ ('d':)
-- "lived"
involuted :: (a -> a) -> Iso' a a
involuted a = iso a a
{-# INLINE involuted #-}
pattern List :: Exts.IsList l => [Exts.Item l] -> l
pattern List a <- (Exts.toList -> a) where
List a = Exts.fromList a
------------------------------------------------------------------------------
-- Magma
------------------------------------------------------------------------------
-- | This isomorphism can be used to inspect a 'Traversal' to see how it associates
-- the structure and it can also be used to bake the 'Traversal' into a 'Magma' so
-- that you can traverse over it multiple times.
magma :: LensLike (Mafic a b) s t a b -> Iso s u (Magma Int t b a) (Magma j u c c)
magma l = iso (runMafic `rmap` l sell) runMagma
{-# INLINE magma #-}
-- | This isomorphism can be used to inspect an 'IndexedTraversal' to see how it associates
-- the structure and it can also be used to bake the 'IndexedTraversal' into a 'Magma' so
-- that you can traverse over it multiple times with access to the original indices.
imagma :: Over (Indexed i) (Molten i a b) s t a b -> Iso s t' (Magma i t b a) (Magma j t' c c)
imagma l = iso (runMolten #. l sell) (iextract .# Molten)
{-# INLINE imagma #-}
------------------------------------------------------------------------------
-- Contravariant
------------------------------------------------------------------------------
-- | Lift an 'Iso' into a 'Contravariant' functor.
--
-- @
-- contramapping :: 'Contravariant' f => 'Iso' s t a b -> 'Iso' (f a) (f b) (f s) (f t)
-- contramapping :: 'Contravariant' f => 'Iso'' s a -> 'Iso'' (f a) (f s)
-- @
contramapping :: Contravariant f => AnIso s t a b -> Iso (f a) (f b) (f s) (f t)
contramapping f = withIso f $ \ sa bt -> iso (contramap sa) (contramap bt)
{-# INLINE contramapping #-}
------------------------------------------------------------------------------
-- Profunctor
------------------------------------------------------------------------------
-- | Lift two 'Iso's into both arguments of a 'Profunctor' simultaneously.
--
-- @
-- dimapping :: 'Profunctor' p => 'Iso' s t a b -> 'Iso' s' t' a' b' -> 'Iso' (p a s') (p b t') (p s a') (p t b')
-- dimapping :: 'Profunctor' p => 'Iso'' s a -> 'Iso'' s' a' -> 'Iso'' (p a s') (p s a')
-- @
dimapping :: (Profunctor p, Profunctor q) => AnIso s t a b -> AnIso s' t' a' b' -> Iso (p a s') (q b t') (p s a') (q t b')
dimapping f g = withIso f $ \ sa bt -> withIso g $ \ s'a' b't' ->
iso (dimap sa s'a') (dimap bt b't')
{-# INLINE dimapping #-}
-- | Lift an 'Iso' contravariantly into the left argument of a 'Profunctor'.
--
-- @
-- lmapping :: 'Profunctor' p => 'Iso' s t a b -> 'Iso' (p a x) (p b y) (p s x) (p t y)
-- lmapping :: 'Profunctor' p => 'Iso'' s a -> 'Iso'' (p a x) (p s x)
-- @
lmapping :: (Profunctor p, Profunctor q) => AnIso s t a b -> Iso (p a x) (q b y) (p s x) (q t y)
lmapping f = withIso f $ \ sa bt -> iso (lmap sa) (lmap bt)
{-# INLINE lmapping #-}
-- | Lift an 'Iso' covariantly into the right argument of a 'Profunctor'.
--
-- @
-- rmapping :: 'Profunctor' p => 'Iso' s t a b -> 'Iso' (p x s) (p y t) (p x a) (p y b)
-- rmapping :: 'Profunctor' p => 'Iso'' s a -> 'Iso'' (p x s) (p x a)
-- @
rmapping :: (Profunctor p, Profunctor q) => AnIso s t a b -> Iso (p x s) (q y t) (p x a) (q y b)
rmapping g = withIso g $ \ sa bt -> iso (rmap sa) (rmap bt)
{-# INLINE rmapping #-}
------------------------------------------------------------------------------
-- Bifunctor
------------------------------------------------------------------------------
-- | Lift two 'Iso's into both arguments of a 'Bifunctor'.
--
-- @
-- bimapping :: 'Bifunctor' p => 'Iso' s t a b -> 'Iso' s' t' a' b' -> 'Iso' (p s s') (p t t') (p a a') (p b b')
-- bimapping :: 'Bifunctor' p => 'Iso'' s a -> 'Iso'' s' a' -> 'Iso'' (p s s') (p a a')
-- @
bimapping :: (Bifunctor f, Bifunctor g) => AnIso s t a b -> AnIso s' t' a' b' -> Iso (f s s') (g t t') (f a a') (g b b')
bimapping f g = withIso f $ \ sa bt -> withIso g $ \s'a' b't' ->
iso (bimap sa s'a') (bimap bt b't')
{-# INLINE bimapping #-}
-- | Lift an 'Iso' into the first argument of a 'Bifunctor'.
--
-- @
-- firsting :: 'Bifunctor' p => 'Iso' s t a b -> 'Iso' (p s x) (p t y) (p a x) (p b y)
-- firsting :: 'Bifunctor' p => 'Iso'' s a -> 'Iso'' (p s x) (p a x)
-- @
firsting :: (Bifunctor f, Bifunctor g) => AnIso s t a b -> Iso (f s x) (g t y) (f a x) (g b y)
firsting p = withIso p $ \ sa bt -> iso (first sa) (first bt)
{-# INLINE firsting #-}
-- | Lift an 'Iso' into the second argument of a 'Bifunctor'. This is
-- essentially the same as 'mapping', but it takes a 'Bifunctor p'
-- constraint instead of a 'Functor (p a)' one.
--
-- @
-- seconding :: 'Bifunctor' p => 'Iso' s t a b -> 'Iso' (p x s) (p y t) (p x a) (p y b)
-- seconding :: 'Bifunctor' p => 'Iso'' s a -> 'Iso'' (p x s) (p x a)
-- @
seconding :: (Bifunctor f, Bifunctor g) => AnIso s t a b -> Iso (f x s) (g y t) (f x a) (g y b)
seconding p = withIso p $ \ sa bt -> iso (second sa) (second bt)
{-# INLINE seconding #-}
-- | Data types that are representationally equal are isomorphic.
--
-- This is only available on GHC 7.8+
--
-- @since 4.13
coerced :: forall s t a b. (Coercible s a, Coercible t b) => Iso s t a b
coerced l = rmap (fmap coerce) l .# coerce
{-# INLINE coerced #-}