forked from mguerrap/5Beam-Turbulence-Methods
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Signature_Production_5beam.m
210 lines (143 loc) · 4.43 KB
/
Signature_Production_5beam.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
% TKE Production from 5 beam RS
% Uses RS_5beam.m
clc
clear
close all
% We need to have the Reynolds Stresses first as 'ReynoldsStress.mat'
% RS from 5 beam AD2CP
% RS are in Earth Coordinates
% Uses RS from 5 beams and shear from mean flow
% Where is the QC Data:
fpath = ['/Users/Maru/Documents/PhD_UW/5BeamCodes/BinDataSignature'];
prefix = ['SignatureData_QC_Bin'];
% Where the RS are:
fpath2 = ['/Users/Maru/Documents/PhD_UW/5BeamCodes/Signature_Production'];
%Where to save the produtcion
savepath = ['/Users/Maru/Documents/PhD_UW/5BeamCodes/Signature_Production'];
% Bins
Nbin=20;
% Ensembles to use
Ens1=10; %First
EnsN=43; %Last
Nens=EnsN-Ens1+1;
% Mean flow direction
alpha=50; % degrees from east to flood (clockwise)
alpha=alpha*pi/180; %radians
% Treshold for mean flow
Uth=0.5; %m/s
% Noise in m/s, check for every deployment
n_sig=0.0265; %m/s
%% Mean flow Data
%
for bin=1:Nbin
fname = [prefix int2str(bin) '.mat'];
load([ fpath '/' fname ])
fs=SigData.fs;
dt=1/fs;
Ens_time(:,bin)=SigData.Ens_time; %Beggining of each ensemble
[Nt NensT]=size(SigData.vbeam1);
time0=[0:dt:Nt*dt-dt]; % Seconds
fik=1;
for fi=Ens1:EnsN %Good ensembles
u_east(bin,:,fik)=SigData.u_east(:,fi);
v_north(bin,:,fik)=SigData.v_north(:,fi);
w(bin,:,fik)=SigData.vbeam5(:,fi);
w2(bin,:,fik)=SigData.w_up(:,fi);
timeEns=Ens_time(fi,bin)+time0/3600/24; %days
timeV(bin,:,fik)=timeEns;
fik=fik+1;
end
z=SigData.range;
end
%% Along and Across Channel Data
u=u_east*cos(alpha)-v_north*sin(alpha);
v=u_east*sin(alpha)+v_north*cos(alpha);
for i=1:Nens %Good Ensembles AI May 2015
umean(:,i)=nanmean(u(:,:,i),2);
vmean(:,i)=nanmean(v(:,:,i),2);
wmean(:,i)=nanmean(w(:,:,i),2);
wmean2(:,i)=nanmean(w2(:,:,i),2);
umeanaux=repmat(umean(:,i),[1,Nt]);
wmeanaux=repmat(wmean(:,i),[1,Nt]);
% RS approximation from E-N velocities
uprime=u(:,:,i)-umeanaux;
wprime=w(:,:,i)-wmeanaux;
uw=uprime.*wprime;
uwmean(:,i)=nanmean(uw,2);
end
UHmean=sqrt(umean.^2+vmean.^2);
u_depthAv=nanmean(UHmean,1);
u_depthAv=nanmean(umean,1); %%%%Check for every site!!!!!
i_NaN=find(abs(u_depthAv)<Uth);
i_use=find(abs(u_depthAv)>=Uth);
umean(:,i_NaN)=NaN;
uwmean(:,i_NaN)=NaN;
%save UHmean_SigMay2015.mat UHmean
%% Shear and Production
% U_mean
for i=1:Nens
% Keeping Sign of umean
% For flood dU/dz is positive
% For ebb dU/dz is negative
dUdz(:,i)=diff(umean(:,i));
dVdz(:,i)=diff(vmean(:,i));
dWdz(:,i)=diff(wmean2(:,i));
end
% RS from 5 beam AD2CP
load([ fpath2 '/ReynoldsStress.mat'])
% RS from 5 beam are now in along channel coordinates
%----Don't need this anymore
% %Transform to Along channel velocities
% u_aw_mean=RS.uw*cos(alpha)-RS.vw*sin(alpha);
% v_aw_mean=RS.uw*sin(alpha)+RS.vw*cos(alpha);
% w_aw_mean=RS.ww;
%-------
% Mean production
P_uw_true=-dUdz.*RS.uw_lc_nr(1:end-1,:);
P_vw_true=-dVdz.*RS.vw_lc_nr(1:end-1,:);
P_ww_true=-dWdz.*RS.ww_lc_nr(1:end-1,:);
P_total=P_uw_true+P_vw_true+P_ww_true;
% VT Production
P_uw_vt=-dUdz.*RS.uw_vt_lc_nr(1:end-1,:);
P_vw_vt=-dVdz.*RS.vw_vt_lc_nr(1:end-1,:);
P_total_vt=P_uw_vt+P_vw_vt+P_ww_true;
figure(1)
clf
for i=1:Nens
semilogx(abs(P_uw_true(:,i)),z(1:end-1),'b')
hold on
semilogx(abs(P_uw_vt(:,i)),z(1:end-1),'g')
end
semilogx(nanmean(abs(P_uw_vt),2),z(1:end-1),'g','LineWidth',3)
semilogx(nanmean(abs(P_uw_true),2),z(1:end-1),'b','LineWidth',3)
hold off
xlabel('P')
ylabel('Z (m)')
%% Noise estimates
% Simple noise RS
M_sig=Nt; %Burst length
var_r=n_sig^4/(M_sig*(sin(2*theta*pi/180))^2); %Reynolds stress variance
sigma_r=sqrt(var_r);
% Simple noise Shear
dz=1; %change dz to the one of your measurements
var_s=n_sig^2/(M_sig*dz*(sin(2*theta))^2);
sigma_s=sqrt(var_s);
Puw_n=RS.uw_lc_nr(1:end-1,:).^2*sigma_s^2+dUdz.^2*sigma_r^2+sigma_s^2*sigma_r^2;
Pvw_n=RS.vw_lc_nr(1:end-1,:).^2*sigma_s^2+dVdz.^2*sigma_r^2+sigma_s^2*sigma_r^2;
Pww_n=RS.ww_lc_nr(1:end-1,:).^2*sigma_s^2+dWdz.^2*sigma_r^2+sigma_s^2*sigma_r^2;
P_n_var=Puw_n+Pvw_n+Pww_n; %Production variance estimate
%% Save Results
Prod.P_uw_true=P_uw_true;
Prod.P_vw_true=P_vw_true;
Prod.P_ww_true=P_ww_true;
Prod.P_total=P_total;
% Variance technique estimates
Prod.P_uw_vt=P_uw_vt;
Prod.P_vw_vt=P_vw_vt;
Prod.P_total_vt=P_total_vt;
% Noise Variance in (m^2s^-3)^2
Prod.P_noise=P_n;
% Mean along-channel velocity
Prod.ua_mean=umean;
savefile=[savepath '/Production.mat'];
save(savefile, 'Prod')