forked from ybgdgh/L3MVN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
model.py
446 lines (371 loc) · 16 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
from typing import Any, Dict, List, Tuple
import cv2
import numpy as np
import torch
import torch.nn as nn
from sklearn.cluster import DBSCAN, HDBSCAN
from torch.nn import functional as F
import envs.utils.depth_utils as du
from utils.model import ChannelPool, get_grid
class Semantic_Mapping(nn.Module):
"""
Semantic_Mapping
"""
def __init__(self, args):
super(Semantic_Mapping, self).__init__()
self.device = args.device
self.screen_h = args.frame_height
self.screen_w = args.frame_width
self.resolution = args.map_resolution
self.z_resolution = args.map_resolution
self.map_size_cm = args.map_size_cm // args.global_downscaling
self.n_channels = 3
self.vision_range = args.vision_range
self.dropout = 0.5
self.fov = args.hfov
self.du_scale = args.du_scale
self.cat_pred_threshold = args.cat_pred_threshold
self.exp_pred_threshold = args.exp_pred_threshold
self.map_pred_threshold = args.map_pred_threshold
self.num_sem_categories = args.num_sem_categories
self.max_height = int(200 / self.z_resolution)
self.min_height = int(-40 / self.z_resolution)
self.agent_height = args.camera_height * 100.0
self.shift_loc = [self.vision_range * self.resolution // 2, 0, np.pi / 2.0]
self.camera_matrix = du.get_camera_matrix(
self.screen_w, self.screen_h, self.fov
)
self.pool = ChannelPool(1)
vr = self.vision_range
self.init_grid = (
torch.zeros(
args.num_processes,
1 + self.num_sem_categories,
vr,
vr,
self.max_height - self.min_height,
)
.float()
.to(self.device)
)
self.feat = (
torch.ones(
args.num_processes,
1 + self.num_sem_categories,
self.screen_h // self.du_scale * self.screen_w // self.du_scale,
)
.float()
.to(self.device)
)
self.max_pool = nn.MaxPool2d(kernel_size=3, stride=1, padding=1)
self.stair_mask_radius = 30
self.stair_mask = self.get_mask(self.stair_mask_radius).to(self.device)
def forward(self, obs, pose_obs, maps_last, poses_last, eve_angle):
bs, c, h, w = obs.size()
depth = obs[:, 3, :, :]
point_cloud_t = du.get_point_cloud_from_z_t(
depth, self.camera_matrix, self.device, scale=self.du_scale
)
agent_view_t = du.transform_camera_view_t(
point_cloud_t, self.agent_height, eve_angle, self.device
)
agent_view_centered_t = du.transform_pose_t(
agent_view_t, self.shift_loc, self.device
)
max_h = self.max_height
min_h = self.min_height
xy_resolution = self.resolution
z_resolution = self.z_resolution
vision_range = self.vision_range
XYZ_cm_std = agent_view_centered_t.float()
XYZ_cm_std[..., :2] = XYZ_cm_std[..., :2] / xy_resolution
XYZ_cm_std[..., :2] = (
(XYZ_cm_std[..., :2] - vision_range // 2.0) / vision_range * 2.0
)
XYZ_cm_std[..., 2] = XYZ_cm_std[..., 2] / z_resolution
XYZ_cm_std[..., 2] = (
(XYZ_cm_std[..., 2] - (max_h + min_h) // 2.0) / (max_h - min_h) * 2.0
)
self.feat[:, 1:, :] = nn.AvgPool2d(self.du_scale)(obs[:, 4:, :, :]).view(
bs, c - 4, h // self.du_scale * w // self.du_scale
)
XYZ_cm_std = XYZ_cm_std.permute(0, 3, 1, 2)
XYZ_cm_std = XYZ_cm_std.view(
XYZ_cm_std.shape[0],
XYZ_cm_std.shape[1],
XYZ_cm_std.shape[2] * XYZ_cm_std.shape[3],
)
voxels = du.splat_feat_nd(
self.init_grid * 0.0, self.feat, XYZ_cm_std
).transpose(2, 3)
min_z = int(25 / z_resolution - min_h)
max_z = int((self.agent_height + 50) / z_resolution - min_h)
mid_z = int(self.agent_height / z_resolution - min_h)
agent_height_proj = voxels[..., min_z:max_z].sum(4)
agent_height_stair_proj = voxels[..., mid_z - 5 : mid_z].sum(4)
all_height_proj = voxels.sum(4)
fp_map_pred = agent_height_proj[:, 0:1, :, :]
fp_exp_pred = all_height_proj[:, 0:1, :, :]
fp_stair_pred = agent_height_stair_proj[:, 0:1, :, :]
fp_map_pred = fp_map_pred / self.map_pred_threshold
fp_stair_pred = fp_stair_pred / self.map_pred_threshold
fp_exp_pred = fp_exp_pred / self.exp_pred_threshold
fp_map_pred = torch.clamp(fp_map_pred, min=0.0, max=1.0)
fp_stair_pred = torch.clamp(fp_stair_pred, min=0.0, max=1.0)
fp_exp_pred = torch.clamp(fp_exp_pred, min=0.0, max=1.0)
pose_pred = poses_last
agent_view = torch.zeros(
bs,
c,
self.map_size_cm // self.resolution,
self.map_size_cm // self.resolution,
).to(self.device)
x1 = self.map_size_cm // (self.resolution * 2) - self.vision_range // 2
x2 = x1 + self.vision_range
y1 = self.map_size_cm // (self.resolution * 2)
y2 = y1 + self.vision_range
agent_view[:, 0:1, y1:y2, x1:x2] = fp_map_pred
agent_view[:, 1:2, y1:y2, x1:x2] = fp_exp_pred
agent_view[:, 4:, y1:y2, x1:x2] = torch.clamp(
agent_height_proj[:, 1:, :, :] / self.cat_pred_threshold, min=0.0, max=1.0
)
agent_view_stair = agent_view.clone().detach()
agent_view_stair[:, 0:1, y1:y2, x1:x2] = fp_stair_pred
corrected_pose = pose_obs
def get_new_pose_batch(pose, rel_pose_change):
pose[:, 1] += rel_pose_change[:, 0] * torch.sin(
pose[:, 2] / 57.29577951308232
) + rel_pose_change[:, 1] * torch.cos(pose[:, 2] / 57.29577951308232)
pose[:, 0] += rel_pose_change[:, 0] * torch.cos(
pose[:, 2] / 57.29577951308232
) - rel_pose_change[:, 1] * torch.sin(pose[:, 2] / 57.29577951308232)
pose[:, 2] += rel_pose_change[:, 2] * 57.29577951308232
pose[:, 2] = torch.fmod(pose[:, 2] - 180.0, 360.0) + 180.0
pose[:, 2] = torch.fmod(pose[:, 2] + 180.0, 360.0) - 180.0
return pose
current_poses = get_new_pose_batch(poses_last, corrected_pose)
st_pose = current_poses.clone().detach()
st_pose[:, :2] = -(
st_pose[:, :2] * 100.0 / self.resolution
- self.map_size_cm // (self.resolution * 2)
) / (self.map_size_cm // (self.resolution * 2))
st_pose[:, 2] = 90.0 - (st_pose[:, 2])
rot_mat, trans_mat = get_grid(st_pose, agent_view.size(), self.device)
rotated = F.grid_sample(agent_view, rot_mat, align_corners=True)
translated = F.grid_sample(rotated, trans_mat, align_corners=True)
# translated[:, 18:19, :, :] = -self.max_pool(-translated[:, 18:19, :, :])
diff_ob_ex = translated[:, 1:2, :, :] - self.max_pool(translated[:, 0:1, :, :])
diff_ob_ex[diff_ob_ex > 0.8] = 1.0
diff_ob_ex[diff_ob_ex != 1.0] = 0.0
maps2 = torch.cat((maps_last.unsqueeze(1), translated.unsqueeze(1)), 1)
map_pred, _ = torch.max(maps2, 1)
for i in range(eve_angle.shape[0]):
if eve_angle[i] == 0:
map_pred[i, 0:1, :, :][diff_ob_ex[i] == 1.0] = 0.0
# stairs view
rot_mat_stair, trans_mat_stair = get_grid(
st_pose, agent_view_stair.size(), self.device
)
rotated_stair = F.grid_sample(
agent_view_stair, rot_mat_stair, align_corners=True
)
translated_stair = F.grid_sample(
rotated_stair, trans_mat_stair, align_corners=True
)
stair_mask = torch.zeros(
self.map_size_cm // self.resolution, self.map_size_cm // self.resolution
).to(self.device)
s_y = int(current_poses[0][1] * 100 / 5)
s_x = int(current_poses[0][0] * 100 / 5)
limit_up = self.map_size_cm // self.resolution - self.stair_mask_radius - 1
limit_be = self.stair_mask_radius
if s_y > limit_up:
s_y = limit_up
if s_y < self.stair_mask_radius:
s_y = self.stair_mask_radius
if s_x > limit_up:
s_x = limit_up
if s_x < self.stair_mask_radius:
s_x = self.stair_mask_radius
stair_mask[
int(s_y - self.stair_mask_radius) : int(s_y + self.stair_mask_radius),
int(s_x - self.stair_mask_radius) : int(s_x + self.stair_mask_radius),
] = self.stair_mask
translated_stair[0, 0:1, :, :] *= stair_mask
translated_stair[0, 1:2, :, :] *= stair_mask
# translated_stair[:, 13:14, :, :] = -self.max_pool(-translated_stair[:, 13:14, :, :])
diff_ob_ex = translated_stair[:, 1:2, :, :] - translated_stair[:, 0:1, :, :]
diff_ob_ex[diff_ob_ex > 0.8] = 1.0
diff_ob_ex[diff_ob_ex != 1.0] = 0.0
maps3 = torch.cat((maps_last.unsqueeze(1), translated_stair.unsqueeze(1)), 1)
map_pred_stair, _ = torch.max(maps3, 1)
for i in range(eve_angle.shape[0]):
if eve_angle[i] == 0:
map_pred_stair[i, 0:1, :, :][diff_ob_ex[i] == 1.0] = 0.0
return translated, map_pred, map_pred_stair, current_poses
def get_mask(self, step_size):
size = int(step_size) * 2
mask = torch.zeros(size, size)
for i in range(size):
for j in range(size):
if ((i + 0.5) - (size // 2)) ** 2 + (
(j + 0.5) - (size // 2)
) ** 2 <= step_size**2:
mask[i, j] = 1
return mask
class FeedforwardNet(nn.Module):
def __init__(self, input_dim, output_dim):
super(FeedforwardNet, self).__init__()
""" self.layers = nn.Sequential(
nn.Linear(input_dim, 512),
nn.BatchNorm1d(512),
nn.ReLU(inplace=True),
nn.Linear(512, 512),
nn.BatchNorm1d(512),
nn.ReLU(inplace=True),
nn.Linear(512, 256),
nn.BatchNorm1d(256),
nn.ReLU(inplace=True),
nn.Linear(256, output_dim),
) """
self.layers = nn.Sequential(
nn.Linear(input_dim, 512),
nn.BatchNorm1d(512),
nn.ReLU(inplace=True),
nn.Linear(512, 256),
nn.BatchNorm1d(256),
nn.ReLU(inplace=True),
nn.Linear(256, output_dim),
)
def forward(self, x):
return self.layers(x)
class SemanticClusteringRawPixel:
def __init__(self, args):
self.cluster = DBSCAN(eps=10, min_samples=50)
def __call__(self, semantic_map: np.ndarray) -> List[List[Dict]]:
num_batch, channels, height, width = semantic_map.shape
semantic_cluster_list = []
for batch in range(num_batch):
batch_semantic_map = semantic_map[batch] # (C x H x W)
zero_map = np.zeros([1, height, width])
batch_semantic_map = np.concatenate([zero_map, batch_semantic_map], axis=0)
# labels will be shifted by 1, 0 represents empty spot
labeled_map = batch_semantic_map.argmax(0)
occupancy_list = np.asarray(zip(*np.where(batch_semantic_map.sum(0) != 0)))
cluster_instance = self.cluster.fit(occupancy_list)
semantic_cluster_list.append(
self._construct_cluster_info_list(
cluster_instance,
occupancy_list,
labeled_map,
)
)
return semantic_cluster_list
def _construct_cluster_info_list(
self,
cluster_instance: Any,
occupancy_list: np.ndarray,
labeled_map: np.ndarray,
) -> List[Dict]:
cluster_labels = cluster_instance.labels_
unique_cluster_labels = np.unique(cluster_labels)
cluster_info_list = []
# construct one ClusterInfo for every unique cluster
# contains coordinates of centroid: (h, w)
# and list of unique object labels
for label in unique_cluster_labels:
# label of -1 indicates outliers
if label != -1:
members = occupancy_list[cluster_labels == label]
cluster_centroid = np.asarray(members).mean(axis=0)
unique_object_labels = set()
for member in members:
unique_object_labels.add(
self._find_object_category(labeled_map, member)
)
cluster_info_list.append(
{
"centroid": list(map(int, cluster_centroid)),
"unique_object_labels": list(unique_object_labels),
}
)
return cluster_info_list
def _find_object_category(
self, labeled_map: np.ndarray, coord: Tuple[int, int]
) -> int:
h, w = coord
return int(labeled_map[h][w])
class SemanticClusteringCentroids:
def __init__(self, args):
self.cluster = HDBSCAN(min_cluster_size=args.min_cluster_size)
def __call__(self, semantic_map: np.ndarray) -> List[Dict]:
"""Generate object clusters from semantic occupancy map
Args:
semantic_map (Channel x Height x Width): each channel refer to a predefined object category
Return:
semantic_cluster_list: list of object clusters for LLM evaluation
"""
occupancy_map = np.any(semantic_map, axis=0) # (H x W)
num_labels, labeled_map, stats, object_centroids = (
cv2.connectedComponentsWithStats(occupancy_map.astype("uint8"))
)
if num_labels <= 1:
return []
object_centroids = object_centroids[1:]
object_locations = []
for i in range(1, num_labels):
locations = list(zip(*np.where(labeled_map == i)))
mid_location = locations[len(locations) // 2]
object_locations.append(mid_location)
object_locations = np.asarray(object_locations)
if len(object_centroids) >= 3:
cluster_instance = self.cluster.fit(object_centroids)
semantic_cluster_list = self._construct_cluster_info_list(
cluster_instance,
object_centroids,
object_locations,
semantic_map,
)
else:
semantic_cluster_list = []
return semantic_cluster_list
def _construct_cluster_info_list(
self,
cluster_instance: Any,
object_centroids: np.ndarray,
object_locations: np.ndarray,
semantic_map: np.ndarray,
) -> List[Dict]:
cluster_labels = cluster_instance.labels_
unique_cluster_labels = np.unique(cluster_labels)
cluster_info_list = []
# construct one ClusterInfo for every unique cluster
# contains coordinates of centroid: (h, w)
# and list of unique object labels
for label in unique_cluster_labels:
# label of -1 indicates outliers
if label != -1:
members = object_centroids[cluster_labels == label]
cluster_centroid = members.mean(axis=0)
members_location = object_locations[cluster_labels == label]
unique_object_labels = set()
for member in members_location:
unique_object_labels.add(
self._find_object_category(semantic_map, member)
)
cluster_info_list.append(
{
# centroid = [h, w]
"centroid": list(map(int, cluster_centroid)),
"unique_object_labels": list(unique_object_labels),
}
)
return cluster_info_list
def _find_object_category(
self, semantic_map: np.ndarray, coord: Tuple[int, int]
) -> int:
h, w = map(int, coord)
if semantic_map[:, h, w].max() == 0:
return -1
else:
return int(semantic_map[:, h, w].argmax()) # type: ignore