-
Notifications
You must be signed in to change notification settings - Fork 14
/
train_drnet_skip.lua
408 lines (351 loc) · 12.7 KB
/
train_drnet_skip.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
require 'torch'
require 'nn'
require 'nngraph'
require 'cunn'
require 'cudnn'
require 'optim'
require 'pl'
require 'paths'
require 'image'
require 'utils'
succ, debugger = pcall(require,'fb.debugger')
----------------------------------------------------------------------
-- parse command-line options
opt = lapp[[
--learningRate (default 0.002) learning rate
--beta1 (default 0.5) momentum term for adam
-b,--batchSize (default 100) batch size
-g,--gpu (default 0) gpu to use
--save (default 'logs/') base directory to save logs
--name (default 'default') checkpoint name
--dataRoot (default '/path/to/data/') data root directory
--optimizer (default 'adam') optimizer to train with
--nEpochs (default 300) max training epochs
--seed (default 1) random seed
--epochSize (default 50000) number of samples per epoch
--contentDim (default 64) dimensionality of noise space
--poseDim (default 16) dimensionality of noise space
--imageSize (default 64) size of image
--dataset (default moving_mnist) dataset
--movingDigits (default 1)
--cropSize (default 227) size of crop (for kitti only)
--maxStep (default 12)
--nShare (default 1) number of frame to use for content encoding
--advWeight (default 0) weight on adversarial scene discriminator loss
--normalize if set normalize pose and action vectors to have unit norm
--model (default 'dcgan')
--unet (default 'dcgan')
--nThreads (default 0) number of dataloading threads
--dataPool (default 200)
--dataWarmup (default 10)
]]
opt.save = ('%s/%s/%s'):format(opt.save, opt.dataset, opt.name)
os.execute('mkdir -p ' .. opt.save .. '/gen/')
os.execute('mkdir -p ' .. opt.save .. '/swap/')
print(opt)
write_opt(opt)
assert(optim[opt.optimizer] ~= nil, 'unknown optimizer: ' .. opt.optimizer)
opt.optimizer = optim[opt.optimizer]
-- setup some stuff
torch.setnumthreads(1)
print('<torch> set nb of threads to ' .. torch.getnumthreads())
torch.setdefaulttensortype('torch.FloatTensor')
cutorch.setDevice(opt.gpu + 1)
print('<gpu> using device ' .. opt.gpu)
torch.manualSeed(opt.seed)
cutorch.manualSeed(opt.seed)
math.randomseed(opt.seed)
local nc
if opt.dataset:find('suncg') or (opt.dataset == 'moving_mnist' and opt.movingDigits> 1) then
nc = 3
else
nc = 1
end
opt.geometry = {nc, opt.imageSize, opt.imageSize}
if paths.filep(opt.save .. '/model.t7') then
checkpoint = torch.load(opt.save .. '/model.t7')
end
if checkpoint then
netEP = checkpoint.netEP
netEC = checkpoint.netEC
netC = checkpoint.netC
print('Loaded models from file')
else
require(('models.%s_%d'):format(opt.model, opt.imageSize))
require(('models.unet_%d'):format(opt.imageSize))
if opt.unet == 'dcgan' then
netEC = makeUnetDCGAN()
elseif opt.unet == 'vgg' then
netEC = makeUnetVGG()
else
assert(false)
end
netEP = makePoseEncoder()
netC = makeSceneDiscriminator()
print('Initialized models from scratch')
end
optimStateEP= {learningRate = opt.learningRate, beta=opt.beta1}
optimStateEC= {learningRate = opt.learningRate, beta=opt.beta1}
optimStateC = {learningRate = opt.learningRate, beta=opt.beta1}
netEC:cuda()
netEP:cuda()
netC:cuda()
params_EC, grads_EC= netEC:getParameters()
params_EP, grads_EP = netEP:getParameters()
params_C, grads_C = netC:getParameters()
rec_criterion = nn.MSECriterion()
rec_criterion:cuda()
sim_criterion = nn.MSECriterion()
sim_criterion:cuda()
bce_criterion = nn.BCECriterion()
bce_criterion:cuda()
local x = {}
for i=1,opt.maxStep do
x[i] = torch.CudaTensor(opt.batchSize, unpack(opt.geometry))
end
local x1, x2 = {}, {}
for i=1,opt.nShare do
x1[i] = torch.CudaTensor(opt.batchSize, unpack(opt.geometry))
x2[i] = torch.CudaTensor(opt.batchSize, unpack(opt.geometry))
end
local target = torch.CudaTensor(opt.batchSize)
function plot_pred(plot_x, fname)
for i=1,opt.maxStep do
x[i]:copy(plot_x[i])
end
for i=1,opt.nShare do
x1[i]:copy(x[i])
end
local offset = math.random(opt.nShare+1, opt.maxStep-opt.nShare)
local hp = netEP:forward(x[offset])
local pred, _ = unpack(netEC:forward({ x1, hp}))
local N = math.min(20, opt.batchSize)
local to_plot = {}
for i=1,N do
for ii=1,opt.nShare do
table.insert(to_plot, x1[ii][i]:float())
end
table.insert(to_plot, x[offset][i]:float())
table.insert(to_plot, pred[i]:float())
end
if opt.dataset:find('mnist') ~= nil then
borderPlot(to_plot)
end
image.save(('%s/gen/%s_%d.png'):format(opt.save, fname, epoch), image.toDisplayTensor{input=to_plot, scaleeach=false, nrow=(opt.nShare+2)*3})
end
function plot_swap(x_cpu, fname)
for i=1,opt.maxStep do
x[i]:copy(x_cpu[i])
end
for i=1,opt.nShare do
x1[i]:copy(x[i])
end
local offset = math.random(opt.nShare+1, opt.maxStep-opt.nShare)
local N = math.min(opt.batchSize, 10)
local hp_seq = {}
for t=1,opt.maxStep do
hp_seq[t] = netEP:forward(x[t]):clone()
for i=2,N do
hp_seq[t][i]:copy(hp_seq[t][1])
end
end
local pred = {}
for t=1,opt.maxStep do
pred[t] = netEC:forward({x1, hp_seq[t]})[1]:clone()
end
local to_plot = {}
for i=1,opt.nShare do
table.insert(to_plot, torch.zeros(unpack(opt.geometry)))
end
for t=1,opt.maxStep do
table.insert(to_plot, x[t][1]:float())
end
for i=1,N do
for ii=1,opt.nShare do
table.insert(to_plot, x1[ii][i]:float())
end
for j=1,opt.maxStep do
table.insert(to_plot, pred[j][i]:float())
end
end
if opt.dataset:find('mnist') then
borderPlot(to_plot)
end
image.save(('%s/swap/%s_%d.png'):format(opt.save, fname, epoch), image.toDisplayTensor{input=to_plot, scaleeach=false, nrow=(opt.maxStep+opt.nShare)})
end
function test(x_cpu)
for i=1,opt.maxStep do
x[i]:copy(x_cpu[i])
end
for i=1,opt.nShare do
x1[i]:copy(x[i])
end
local offset = math.random(opt.nShare, opt.maxStep-opt.nShare)
for i=1,opt.nShare do
x2[i]:copy(x[i+offset])
end
local hp1 = netEP:forward(x[math.random(1, opt.maxStep)]):clone()
local hp2 = netEP:forward(x[offset])
local out1 = netEC:forward({x1, hp2})
local pred, hc1 = out1[1]:clone(), out1[2]:clone()
local hc2 = netEC:forward({x2, hp2})[2]
-- ||h1 - h2||
local latent_mse = sim_criterion:forward(hc1, hc2)
-- ||D(hc1, hp2), x2||
local pred_mse = rec_criterion:forward(pred, x[offset])
-- scene discriminator loss
target:fill(0.5)
local out = netC:forward({hp1, hp2})
local nll = bce_criterion:forward(out, target)
local acc = out:gt(0.5):sum()
return pred_mse, latent_mse, nll, acc
end
function train_scene_discriminator(x_cpu)
for i=1,opt.maxStep do
x[i]:copy(x_cpu[i])
end
grads_C:zero()
local bs = opt.batchSize
local half = opt.batchSize/2
target:sub(1,half):fill(1) -- 1 if same scene
target:sub(half+1,bs):fill(0) -- 0 if diff scene
local offset1 = math.random(1, opt.maxStep)
local offset2 = math.random(1, opt.maxStep)
local hp1 = netEP:forward(x[offset1]):clone()
local hp2 = netEP:forward(x[offset2]):clone()
-- first half of batch pose vectors from same scene, second half randomly permute
local rp = torch.linspace(1, opt.batchSize, opt.batchSize)
rp:sub(half+1,bs):copy(torch.randperm(half):add(half))
local hp2 = hp2:index(1, rp:type('torch.LongTensor'))
local out = netC:forward({hp1, hp2})
local nll = bce_criterion:forward(out, target)
local dout = bce_criterion:backward(out, target)
netC:backward({hp1, hp2}, dout)
local acc_same = out:sub(1,half):gt(0.5):sum()
local acc_diff = out:sub(half+1,bs):lt(0.5):sum()
opt.optimizer(function() return 0, grads_C end, params_C, optimStateC)
return nll, acc_same, acc_diff
end
local dhc2 = torch.CudaTensor(opt.batchSize, opt.contentDim, 1, 1)
local dpred2 = torch.CudaTensor(opt.batchSize, unpack(opt.geometry))
function train(x_cpu)
for i=1,opt.maxStep do
x[i]:copy(x_cpu[i])
end
for i=1,opt.nShare do
x1[i]:copy(x[i])
end
local offset = math.random(opt.nShare+1, opt.maxStep-opt.nShare)
for i=1,opt.nShare do
x2[i]:copy(x[i+offset])
end
grads_EP:zero()
grads_EC:zero()
local hp1 = netEP:forward(x[math.random(1, opt.maxStep)]):clone()
local hp2 = netEP:forward(x[offset])
local hc2 = netEC:forward({x2, hp2})[2]:clone()
local pred, hc1 = unpack(netEC:forward({x1, hp2}))
-- minimize ||hc1 - hc2||
local latent_mse = sim_criterion:forward(hc1, hc2)
local dhc1_sim = sim_criterion:backward(hc1, hc2)
-- maximize entropy of scene discrimintor output
local dhp2_rec
local nll = 0
if opt.advWeight > 0 then
target:fill(0.5)
local out = netC:forward({hp1, hp2})
bce_criterion:forward(out, target)
local dout = bce_criterion:backward(out, target)
dhp2_rec = netC:backward({hp1, hp2}, dout)[2]
end
-- minimize ||P(hc1, hp2), x2||
local pred_mse = rec_criterion:forward(pred, x[offset])
local dpred = rec_criterion:backward(pred, x[offset])
local dhp2 = netEC:backward({x1, hp2}, {dpred, dhc1_sim})[2]
if opt.advWeight > 0 then
dhp2:add(opt.advWeight, dhp2_rec)
end
netEP:backward(x[offset], dhp2)
opt.optimizer(function() return 0, grads_EC end, params_EC, optimStateEC)
opt.optimizer(function() return 0, grads_EP end, params_EP, optimStateEP)
return pred_mse, latent_mse
end
require 'data.data'
plot_x_train = trainLoader:getBatch(opt.batchSize, opt.maxStep)
plot_x_val = valLoader:getBatch(opt.batchSize, opt.maxStep)
test_log = io.open(('%s/test.log'):format(opt.save), 'a')
train_log = io.open(('%s/train.log'):format(opt.save), 'a')
if checkpoint then
best = checkpoint.best
start_epoch = checkpoint.epoch+1
total_iter = checkpoint.total_iter
print('Starting training at epoch ' .. start_epoch)
else
best = 1e10
start_epoch = 0
total_iter = 0
end
epoch = start_epoch
while true do
collectgarbage()
collectgarbage()
-- train
print('\n<trainer> Epoch ' .. epoch )
netEC:training()
netEP:training()
netC:training()
local iter, pred_mse, latent_mse, sd_acc, sd_nll = 0, 0, 0, 0, 0
local nTrain = opt.epochSize
for i=1,nTrain,opt.batchSize do
xlua.progress(i, nTrain)
local batch = trainLoader:getBatch(opt.batchSize, opt.maxStep)
local nll, acc_s, acc_d = train_scene_discriminator(batch)
sd_nll = sd_nll + nll
sd_acc = sd_acc + (acc_s+acc_d)
local p_mse, l_mse = train(batch)
pred_mse = pred_mse + p_mse
latent_mse = latent_mse + l_mse
iter=iter+1
total_iter = total_iter + 1
end
print(('\n(%d)\tprediction mse = %.4f, latent mse = %.4f, scene disc acc = %.4f%%, scene disc nll = %.4f'):format(total_iter, pred_mse/iter, latent_mse/iter, 100*sd_acc/(opt.batchSize*iter), sd_nll/iter))
train_log:write(('%.4f\t%.4f\t%.4f\t%.4f\n'):format(pred_mse/iter, latent_mse/iter, sd_nll/iter, 100*sd_acc/(opt.batchSize*iter)))
train_log:flush()
-- test
netEC:evaluate()
netEP:evaluate()
netC:evaluate()
local iter, pred_mse, latent_mse, sd_nll, sd_acc = 0, 0, 0, 0, 0
local nTest = 1000
for i=1,nTest,opt.batchSize do
local p_mse, l_mse, nll, acc = test(valLoader:getBatch(opt.batchSize, opt.maxStep, 4))
pred_mse = pred_mse + p_mse
latent_mse = latent_mse + l_mse
sd_nll = sd_nll + nll
sd_acc = sd_acc + acc
iter=iter+1
end
print(('\tprediction mse = %.4f, latent mse = %.4f'):format(pred_mse/iter, latent_mse/iter))
test_log:write(('%.4f\t%.4f\t%.4f\t%.4f\n'):format(pred_mse/iter, latent_mse/iter, sd_nll/iter, 100*sd_acc/(opt.batchSize*iter)))
test_log:flush()
if pred_mse/iter < best then
best = pred_mse / iter
print(('Saving best model so far (pred mse = %.4f) %s/model_best.t7'):format(pred_mse/iter, opt.save))
torch.save(('%s/model_best.t7'):format(opt.save), {netEC=sanitize(netEC), netEP=sanitize(netEP), opt=opt, epoch=epoch, best=best, total_iter=total_iter})
end
-- plot
--netEC:evaluate()
--siameseEC:evaluate()
plot_pred(plot_x_val, 'val')
plot_pred(plot_x_train, 'train')
plot_swap(valLoader:getBatch(opt.batchSize, opt.maxStep), 'val')
plot_swap(trainLoader:getBatch(opt.batchSize, opt.maxStep), 'train')
if epoch % 1 == 0 then
print(('Saving model %s/model.t7'):format(opt.save))
torch.save(('%s/model.t7'):format(opt.save), {netC=sanitize(netC), netEC=sanitize(netEC), netEP=sanitize(netEP), opt=opt, epoch=epoch, best=best, total_iter=total_iter})
end
epoch = epoch+1
if epoch > opt.nEpochs then break end
end
train_log:close()
test_log:close()