forked from nothings/stb
-
Notifications
You must be signed in to change notification settings - Fork 0
/
stb_connected_components.h
1049 lines (905 loc) · 36.4 KB
/
stb_connected_components.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// stb_connected_components - v0.96 - public domain connected components on grids
// https://github.com/nothings/stb
//
// Finds connected components on 2D grids for testing reachability between
// two points, with fast updates when changing reachability (e.g. on one machine
// it was typically 0.2ms w/ 1024x1024 grid). Each grid square must be "open" or
// "closed" (traversable or untraversable), and grid squares are only connected
// to their orthogonal neighbors, not diagonally.
//
// In one source file, create the implementation by doing something like this:
//
// #define STBCC_GRID_COUNT_X_LOG2 10
// #define STBCC_GRID_COUNT_Y_LOG2 10
// #define STB_CONNECTED_COMPONENTS_IMPLEMENTATION
// #include "stb_connected_components.h"
//
// The above creates an implementation that can run on maps up to 1024x1024.
// Map sizes must be a multiple of (1<<(LOG2/2)) on each axis (e.g. 32 if LOG2=10,
// 16 if LOG2=8, etc.) (You can just pad your map with untraversable space.)
//
// MEMORY USAGE
//
// Uses about 6-7 bytes per grid square (e.g. 7MB for a 1024x1024 grid).
// Uses a single worst-case allocation which you pass in.
//
// PERFORMANCE
//
// On a core i7-2700K at 3.5 Ghz, for a particular 1024x1024 map (map_03.png):
//
// Creating map : 44.85 ms
// Making one square traversable: 0.27 ms (average over 29,448 calls)
// Making one square untraversable: 0.23 ms (average over 30,123 calls)
// Reachability query: 0.00001 ms (average over 4,000,000 calls)
//
// On non-degenerate maps update time is O(N^0.5), but on degenerate maps like
// checkerboards or 50% random, update time is O(N^0.75) (~2ms on above machine).
//
// CHANGELOG
//
// 0.96 (2019-03-04) Fix warnings
// 0.95 (2016-10-16) Bugfix if multiple clumps in one cluster connect to same clump in another
// 0.94 (2016-04-17) Bugfix & optimize worst case (checkerboard & random)
// 0.93 (2016-04-16) Reduce memory by 10x for 1Kx1K map; small speedup
// 0.92 (2016-04-16) Compute sqrt(N) cluster size by default
// 0.91 (2016-04-15) Initial release
//
// TODO:
// - better API documentation
// - more comments
// - try re-integrating naive algorithm & compare performance
// - more optimized batching (current approach still recomputes local clumps many times)
// - function for setting a grid of squares at once (just use batching)
//
// LICENSE
//
// See end of file for license information.
//
// ALGORITHM
//
// The NxN grid map is split into sqrt(N) x sqrt(N) blocks called
// "clusters". Each cluster independently computes a set of connected
// components within that cluster (ignoring all connectivity out of
// that cluster) using a union-find disjoint set forest. This produces a bunch
// of locally connected components called "clumps". Each clump is (a) connected
// within its cluster, (b) does not directly connect to any other clumps in the
// cluster (though it may connect to them by paths that lead outside the cluster,
// but those are ignored at this step), and (c) maintains an adjacency list of
// all clumps in adjacent clusters that it _is_ connected to. Then a second
// union-find disjoint set forest is used to compute connected clumps
// globally, across the whole map. Reachability is then computed by
// finding which clump each input point belongs to, and checking whether
// those clumps are in the same "global" connected component.
//
// The above data structure can be updated efficiently; on a change
// of a single grid square on the map, only one cluster changes its
// purely-local state, so only one cluster needs its clumps fully
// recomputed. Clumps in adjacent clusters need their adjacency lists
// updated: first to remove all references to the old clumps in the
// rebuilt cluster, then to add new references to the new clumps. Both
// of these operations can use the existing "find which clump each input
// point belongs to" query to compute that adjacency information rapidly.
#ifndef INCLUDE_STB_CONNECTED_COMPONENTS_H
#define INCLUDE_STB_CONNECTED_COMPONENTS_H
#include <stdlib.h>
typedef struct st_stbcc_grid stbcc_grid;
#ifdef __cplusplus
extern "C" {
#endif
//////////////////////////////////////////////////////////////////////////////////////////
//
// initialization
//
// you allocate the grid data structure to this size (note that it will be very big!!!)
extern size_t stbcc_grid_sizeof(void);
// initialize the grid, value of map[] is 0 = traversable, non-0 is solid
extern void stbcc_init_grid(stbcc_grid *g, unsigned char *map, int w, int h);
//////////////////////////////////////////////////////////////////////////////////////////
//
// main functionality
//
// update a grid square state, 0 = traversable, non-0 is solid
// i can add a batch-update if it's needed
extern void stbcc_update_grid(stbcc_grid *g, int x, int y, int solid);
// query if two grid squares are reachable from each other
extern int stbcc_query_grid_node_connection(stbcc_grid *g, int x1, int y1, int x2, int y2);
//////////////////////////////////////////////////////////////////////////////////////////
//
// bonus functions
//
// wrap multiple stbcc_update_grid calls in these function to compute
// multiple updates more efficiently; cannot make queries inside batch
extern void stbcc_update_batch_begin(stbcc_grid *g);
extern void stbcc_update_batch_end(stbcc_grid *g);
// query the grid data structure for whether a given square is open or not
extern int stbcc_query_grid_open(stbcc_grid *g, int x, int y);
// get a unique id for the connected component this is in; it's not necessarily
// small, you'll need a hash table or something to remap it (or just use
extern unsigned int stbcc_get_unique_id(stbcc_grid *g, int x, int y);
#define STBCC_NULL_UNIQUE_ID 0xffffffff // returned for closed map squares
#ifdef __cplusplus
}
#endif
#endif // INCLUDE_STB_CONNECTED_COMPONENTS_H
#ifdef STB_CONNECTED_COMPONENTS_IMPLEMENTATION
#include <assert.h>
#include <string.h> // memset
#if !defined(STBCC_GRID_COUNT_X_LOG2) || !defined(STBCC_GRID_COUNT_Y_LOG2)
#error "You must define STBCC_GRID_COUNT_X_LOG2 and STBCC_GRID_COUNT_Y_LOG2 to define the max grid supported."
#endif
#define STBCC__GRID_COUNT_X (1 << STBCC_GRID_COUNT_X_LOG2)
#define STBCC__GRID_COUNT_Y (1 << STBCC_GRID_COUNT_Y_LOG2)
#define STBCC__MAP_STRIDE (1 << (STBCC_GRID_COUNT_X_LOG2-3))
#ifndef STBCC_CLUSTER_SIZE_X_LOG2
#define STBCC_CLUSTER_SIZE_X_LOG2 (STBCC_GRID_COUNT_X_LOG2/2) // log2(sqrt(2^N)) = 1/2 * log2(2^N)) = 1/2 * N
#if STBCC_CLUSTER_SIZE_X_LOG2 > 6
#undef STBCC_CLUSTER_SIZE_X_LOG2
#define STBCC_CLUSTER_SIZE_X_LOG2 6
#endif
#endif
#ifndef STBCC_CLUSTER_SIZE_Y_LOG2
#define STBCC_CLUSTER_SIZE_Y_LOG2 (STBCC_GRID_COUNT_Y_LOG2/2)
#if STBCC_CLUSTER_SIZE_Y_LOG2 > 6
#undef STBCC_CLUSTER_SIZE_Y_LOG2
#define STBCC_CLUSTER_SIZE_Y_LOG2 6
#endif
#endif
#define STBCC__CLUSTER_SIZE_X (1 << STBCC_CLUSTER_SIZE_X_LOG2)
#define STBCC__CLUSTER_SIZE_Y (1 << STBCC_CLUSTER_SIZE_Y_LOG2)
#define STBCC__CLUSTER_COUNT_X_LOG2 (STBCC_GRID_COUNT_X_LOG2 - STBCC_CLUSTER_SIZE_X_LOG2)
#define STBCC__CLUSTER_COUNT_Y_LOG2 (STBCC_GRID_COUNT_Y_LOG2 - STBCC_CLUSTER_SIZE_Y_LOG2)
#define STBCC__CLUSTER_COUNT_X (1 << STBCC__CLUSTER_COUNT_X_LOG2)
#define STBCC__CLUSTER_COUNT_Y (1 << STBCC__CLUSTER_COUNT_Y_LOG2)
#if STBCC__CLUSTER_SIZE_X >= STBCC__GRID_COUNT_X || STBCC__CLUSTER_SIZE_Y >= STBCC__GRID_COUNT_Y
#error "STBCC_CLUSTER_SIZE_X/Y_LOG2 must be smaller than STBCC_GRID_COUNT_X/Y_LOG2"
#endif
// worst case # of clumps per cluster
#define STBCC__MAX_CLUMPS_PER_CLUSTER_LOG2 (STBCC_CLUSTER_SIZE_X_LOG2 + STBCC_CLUSTER_SIZE_Y_LOG2-1)
#define STBCC__MAX_CLUMPS_PER_CLUSTER (1 << STBCC__MAX_CLUMPS_PER_CLUSTER_LOG2)
#define STBCC__MAX_CLUMPS (STBCC__MAX_CLUMPS_PER_CLUSTER * STBCC__CLUSTER_COUNT_X * STBCC__CLUSTER_COUNT_Y)
#define STBCC__NULL_CLUMPID STBCC__MAX_CLUMPS_PER_CLUSTER
#define STBCC__CLUSTER_X_FOR_COORD_X(x) ((x) >> STBCC_CLUSTER_SIZE_X_LOG2)
#define STBCC__CLUSTER_Y_FOR_COORD_Y(y) ((y) >> STBCC_CLUSTER_SIZE_Y_LOG2)
#define STBCC__MAP_BYTE_MASK(x,y) (1 << ((x) & 7))
#define STBCC__MAP_BYTE(g,x,y) ((g)->map[y][(x) >> 3])
#define STBCC__MAP_OPEN(g,x,y) (STBCC__MAP_BYTE(g,x,y) & STBCC__MAP_BYTE_MASK(x,y))
typedef unsigned short stbcc__clumpid;
typedef unsigned char stbcc__verify_max_clumps[STBCC__MAX_CLUMPS_PER_CLUSTER < (1 << (8*sizeof(stbcc__clumpid))) ? 1 : -1];
#define STBCC__MAX_EXITS_PER_CLUSTER (STBCC__CLUSTER_SIZE_X + STBCC__CLUSTER_SIZE_Y) // 64 for 32x32
#define STBCC__MAX_EXITS_PER_CLUMP (STBCC__CLUSTER_SIZE_X + STBCC__CLUSTER_SIZE_Y) // 64 for 32x32
#define STBCC__MAX_EDGE_CLUMPS_PER_CLUSTER (STBCC__MAX_EXITS_PER_CLUMP)
// 2^19 * 2^6 => 2^25 exits => 2^26 => 64MB for 1024x1024
// Logic for above on 4x4 grid:
//
// Many clumps: One clump:
// + + + +
// +X.X. +XX.X+
// .X.X+ .XXX
// +X.X. XXX.
// .X.X+ +X.XX+
// + + + +
//
// 8 exits either way
typedef unsigned char stbcc__verify_max_exits[STBCC__MAX_EXITS_PER_CLUMP <= 256];
typedef struct
{
unsigned short clump_index:12;
signed short cluster_dx:2;
signed short cluster_dy:2;
} stbcc__relative_clumpid;
typedef union
{
struct {
unsigned int clump_index:12;
unsigned int cluster_x:10;
unsigned int cluster_y:10;
} f;
unsigned int c;
} stbcc__global_clumpid;
// rebuilt cluster 3,4
// what changes in cluster 2,4
typedef struct
{
stbcc__global_clumpid global_label; // 4
unsigned char num_adjacent; // 1
unsigned char max_adjacent; // 1
unsigned char adjacent_clump_list_index; // 1
unsigned char reserved;
} stbcc__clump; // 8
#define STBCC__CLUSTER_ADJACENCY_COUNT (STBCC__MAX_EXITS_PER_CLUSTER*2)
typedef struct
{
short num_clumps;
unsigned char num_edge_clumps;
unsigned char rebuild_adjacency;
stbcc__clump clump[STBCC__MAX_CLUMPS_PER_CLUSTER]; // 8 * 2^9 = 4KB
stbcc__relative_clumpid adjacency_storage[STBCC__CLUSTER_ADJACENCY_COUNT]; // 256 bytes
} stbcc__cluster;
struct st_stbcc_grid
{
int w,h,cw,ch;
int in_batched_update;
//unsigned char cluster_dirty[STBCC__CLUSTER_COUNT_Y][STBCC__CLUSTER_COUNT_X]; // could bitpack, but: 1K x 1K => 1KB
unsigned char map[STBCC__GRID_COUNT_Y][STBCC__MAP_STRIDE]; // 1K x 1K => 1K x 128 => 128KB
stbcc__clumpid clump_for_node[STBCC__GRID_COUNT_Y][STBCC__GRID_COUNT_X]; // 1K x 1K x 2 = 2MB
stbcc__cluster cluster[STBCC__CLUSTER_COUNT_Y][STBCC__CLUSTER_COUNT_X]; // 1K x 4.5KB = 4.5MB
};
int stbcc_query_grid_node_connection(stbcc_grid *g, int x1, int y1, int x2, int y2)
{
stbcc__global_clumpid label1, label2;
stbcc__clumpid c1 = g->clump_for_node[y1][x1];
stbcc__clumpid c2 = g->clump_for_node[y2][x2];
int cx1 = STBCC__CLUSTER_X_FOR_COORD_X(x1);
int cy1 = STBCC__CLUSTER_Y_FOR_COORD_Y(y1);
int cx2 = STBCC__CLUSTER_X_FOR_COORD_X(x2);
int cy2 = STBCC__CLUSTER_Y_FOR_COORD_Y(y2);
assert(!g->in_batched_update);
if (c1 == STBCC__NULL_CLUMPID || c2 == STBCC__NULL_CLUMPID)
return 0;
label1 = g->cluster[cy1][cx1].clump[c1].global_label;
label2 = g->cluster[cy2][cx2].clump[c2].global_label;
if (label1.c == label2.c)
return 1;
return 0;
}
int stbcc_query_grid_open(stbcc_grid *g, int x, int y)
{
return STBCC__MAP_OPEN(g, x, y) != 0;
}
unsigned int stbcc_get_unique_id(stbcc_grid *g, int x, int y)
{
stbcc__clumpid c = g->clump_for_node[y][x];
int cx = STBCC__CLUSTER_X_FOR_COORD_X(x);
int cy = STBCC__CLUSTER_Y_FOR_COORD_Y(y);
assert(!g->in_batched_update);
if (c == STBCC__NULL_CLUMPID) return STBCC_NULL_UNIQUE_ID;
return g->cluster[cy][cx].clump[c].global_label.c;
}
typedef struct
{
unsigned char x,y;
} stbcc__tinypoint;
typedef struct
{
stbcc__tinypoint parent[STBCC__CLUSTER_SIZE_Y][STBCC__CLUSTER_SIZE_X]; // 32x32 => 2KB
stbcc__clumpid label[STBCC__CLUSTER_SIZE_Y][STBCC__CLUSTER_SIZE_X];
} stbcc__cluster_build_info;
static void stbcc__build_clumps_for_cluster(stbcc_grid *g, int cx, int cy);
static void stbcc__remove_connections_to_adjacent_cluster(stbcc_grid *g, int cx, int cy, int dx, int dy);
static void stbcc__add_connections_to_adjacent_cluster(stbcc_grid *g, int cx, int cy, int dx, int dy);
static stbcc__global_clumpid stbcc__clump_find(stbcc_grid *g, stbcc__global_clumpid n)
{
stbcc__global_clumpid q;
stbcc__clump *c = &g->cluster[n.f.cluster_y][n.f.cluster_x].clump[n.f.clump_index];
if (c->global_label.c == n.c)
return n;
q = stbcc__clump_find(g, c->global_label);
c->global_label = q;
return q;
}
typedef struct
{
unsigned int cluster_x;
unsigned int cluster_y;
unsigned int clump_index;
} stbcc__unpacked_clumpid;
static void stbcc__clump_union(stbcc_grid *g, stbcc__unpacked_clumpid m, int x, int y, int idx)
{
stbcc__clump *mc = &g->cluster[m.cluster_y][m.cluster_x].clump[m.clump_index];
stbcc__clump *nc = &g->cluster[y][x].clump[idx];
stbcc__global_clumpid mp = stbcc__clump_find(g, mc->global_label);
stbcc__global_clumpid np = stbcc__clump_find(g, nc->global_label);
if (mp.c == np.c)
return;
g->cluster[mp.f.cluster_y][mp.f.cluster_x].clump[mp.f.clump_index].global_label = np;
}
static void stbcc__build_connected_components_for_clumps(stbcc_grid *g)
{
int i,j,k,h;
for (j=0; j < STBCC__CLUSTER_COUNT_Y; ++j) {
for (i=0; i < STBCC__CLUSTER_COUNT_X; ++i) {
stbcc__cluster *cluster = &g->cluster[j][i];
for (k=0; k < (int) cluster->num_edge_clumps; ++k) {
stbcc__global_clumpid m;
m.f.clump_index = k;
m.f.cluster_x = i;
m.f.cluster_y = j;
assert((int) m.f.clump_index == k && (int) m.f.cluster_x == i && (int) m.f.cluster_y == j);
cluster->clump[k].global_label = m;
}
}
}
for (j=0; j < STBCC__CLUSTER_COUNT_Y; ++j) {
for (i=0; i < STBCC__CLUSTER_COUNT_X; ++i) {
stbcc__cluster *cluster = &g->cluster[j][i];
for (k=0; k < (int) cluster->num_edge_clumps; ++k) {
stbcc__clump *clump = &cluster->clump[k];
stbcc__unpacked_clumpid m;
stbcc__relative_clumpid *adj;
m.clump_index = k;
m.cluster_x = i;
m.cluster_y = j;
adj = &cluster->adjacency_storage[clump->adjacent_clump_list_index];
for (h=0; h < clump->num_adjacent; ++h) {
unsigned int clump_index = adj[h].clump_index;
unsigned int x = adj[h].cluster_dx + i;
unsigned int y = adj[h].cluster_dy + j;
stbcc__clump_union(g, m, x, y, clump_index);
}
}
}
}
for (j=0; j < STBCC__CLUSTER_COUNT_Y; ++j) {
for (i=0; i < STBCC__CLUSTER_COUNT_X; ++i) {
stbcc__cluster *cluster = &g->cluster[j][i];
for (k=0; k < (int) cluster->num_edge_clumps; ++k) {
stbcc__global_clumpid m;
m.f.clump_index = k;
m.f.cluster_x = i;
m.f.cluster_y = j;
stbcc__clump_find(g, m);
}
}
}
}
static void stbcc__build_all_connections_for_cluster(stbcc_grid *g, int cx, int cy)
{
// in this particular case, we are fully non-incremental. that means we
// can discover the correct sizes for the arrays, but requires we build
// the data into temporary data structures, or just count the sizes, so
// for simplicity we do the latter
stbcc__cluster *cluster = &g->cluster[cy][cx];
unsigned char connected[STBCC__MAX_EDGE_CLUMPS_PER_CLUSTER][STBCC__MAX_EDGE_CLUMPS_PER_CLUSTER/8]; // 64 x 8 => 1KB
unsigned char num_adj[STBCC__MAX_CLUMPS_PER_CLUSTER] = { 0 };
int x = cx * STBCC__CLUSTER_SIZE_X;
int y = cy * STBCC__CLUSTER_SIZE_Y;
int step_x, step_y=0, i, j, k, n, m, dx, dy, total;
int extra;
g->cluster[cy][cx].rebuild_adjacency = 0;
total = 0;
for (m=0; m < 4; ++m) {
switch (m) {
case 0:
dx = 1, dy = 0;
step_x = 0, step_y = 1;
i = STBCC__CLUSTER_SIZE_X-1;
j = 0;
n = STBCC__CLUSTER_SIZE_Y;
break;
case 1:
dx = -1, dy = 0;
i = 0;
j = 0;
step_x = 0;
step_y = 1;
n = STBCC__CLUSTER_SIZE_Y;
break;
case 2:
dy = -1, dx = 0;
i = 0;
j = 0;
step_x = 1;
step_y = 0;
n = STBCC__CLUSTER_SIZE_X;
break;
case 3:
dy = 1, dx = 0;
i = 0;
j = STBCC__CLUSTER_SIZE_Y-1;
step_x = 1;
step_y = 0;
n = STBCC__CLUSTER_SIZE_X;
break;
}
if (cx+dx < 0 || cx+dx >= g->cw || cy+dy < 0 || cy+dy >= g->ch)
continue;
memset(connected, 0, sizeof(connected));
for (k=0; k < n; ++k) {
if (STBCC__MAP_OPEN(g, x+i, y+j) && STBCC__MAP_OPEN(g, x+i+dx, y+j+dy)) {
stbcc__clumpid src = g->clump_for_node[y+j][x+i];
stbcc__clumpid dest = g->clump_for_node[y+j+dy][x+i+dx];
if (0 == (connected[src][dest>>3] & (1 << (dest & 7)))) {
connected[src][dest>>3] |= 1 << (dest & 7);
++num_adj[src];
++total;
}
}
i += step_x;
j += step_y;
}
}
assert(total <= STBCC__CLUSTER_ADJACENCY_COUNT);
// decide how to apportion unused adjacency slots; only clumps that lie
// on the edges of the cluster need adjacency slots, so divide them up
// evenly between those clumps
// we want:
// extra = (STBCC__CLUSTER_ADJACENCY_COUNT - total) / cluster->num_edge_clumps;
// but we efficiently approximate this without a divide, because
// ignoring edge-vs-non-edge with 'num_adj[i]*2' was faster than
// 'num_adj[i]+extra' with the divide
if (total + (cluster->num_edge_clumps<<2) <= STBCC__CLUSTER_ADJACENCY_COUNT)
extra = 4;
else if (total + (cluster->num_edge_clumps<<1) <= STBCC__CLUSTER_ADJACENCY_COUNT)
extra = 2;
else if (total + (cluster->num_edge_clumps<<0) <= STBCC__CLUSTER_ADJACENCY_COUNT)
extra = 1;
else
extra = 0;
total = 0;
for (i=0; i < (int) cluster->num_edge_clumps; ++i) {
int alloc = num_adj[i]+extra;
if (alloc > STBCC__MAX_EXITS_PER_CLUSTER)
alloc = STBCC__MAX_EXITS_PER_CLUSTER;
assert(total < 256); // must fit in byte
cluster->clump[i].adjacent_clump_list_index = (unsigned char) total;
cluster->clump[i].max_adjacent = alloc;
cluster->clump[i].num_adjacent = 0;
total += alloc;
}
assert(total <= STBCC__CLUSTER_ADJACENCY_COUNT);
stbcc__add_connections_to_adjacent_cluster(g, cx, cy, -1, 0);
stbcc__add_connections_to_adjacent_cluster(g, cx, cy, 1, 0);
stbcc__add_connections_to_adjacent_cluster(g, cx, cy, 0,-1);
stbcc__add_connections_to_adjacent_cluster(g, cx, cy, 0, 1);
// make sure all of the above succeeded.
assert(g->cluster[cy][cx].rebuild_adjacency == 0);
}
static void stbcc__add_connections_to_adjacent_cluster_with_rebuild(stbcc_grid *g, int cx, int cy, int dx, int dy)
{
if (cx >= 0 && cx < g->cw && cy >= 0 && cy < g->ch) {
stbcc__add_connections_to_adjacent_cluster(g, cx, cy, dx, dy);
if (g->cluster[cy][cx].rebuild_adjacency)
stbcc__build_all_connections_for_cluster(g, cx, cy);
}
}
void stbcc_update_grid(stbcc_grid *g, int x, int y, int solid)
{
int cx,cy;
if (!solid) {
if (STBCC__MAP_OPEN(g,x,y))
return;
} else {
if (!STBCC__MAP_OPEN(g,x,y))
return;
}
cx = STBCC__CLUSTER_X_FOR_COORD_X(x);
cy = STBCC__CLUSTER_Y_FOR_COORD_Y(y);
stbcc__remove_connections_to_adjacent_cluster(g, cx-1, cy, 1, 0);
stbcc__remove_connections_to_adjacent_cluster(g, cx+1, cy, -1, 0);
stbcc__remove_connections_to_adjacent_cluster(g, cx, cy-1, 0, 1);
stbcc__remove_connections_to_adjacent_cluster(g, cx, cy+1, 0,-1);
if (!solid)
STBCC__MAP_BYTE(g,x,y) |= STBCC__MAP_BYTE_MASK(x,y);
else
STBCC__MAP_BYTE(g,x,y) &= ~STBCC__MAP_BYTE_MASK(x,y);
stbcc__build_clumps_for_cluster(g, cx, cy);
stbcc__build_all_connections_for_cluster(g, cx, cy);
stbcc__add_connections_to_adjacent_cluster_with_rebuild(g, cx-1, cy, 1, 0);
stbcc__add_connections_to_adjacent_cluster_with_rebuild(g, cx+1, cy, -1, 0);
stbcc__add_connections_to_adjacent_cluster_with_rebuild(g, cx, cy-1, 0, 1);
stbcc__add_connections_to_adjacent_cluster_with_rebuild(g, cx, cy+1, 0,-1);
if (!g->in_batched_update)
stbcc__build_connected_components_for_clumps(g);
#if 0
else
g->cluster_dirty[cy][cx] = 1;
#endif
}
void stbcc_update_batch_begin(stbcc_grid *g)
{
assert(!g->in_batched_update);
g->in_batched_update = 1;
}
void stbcc_update_batch_end(stbcc_grid *g)
{
assert(g->in_batched_update);
g->in_batched_update = 0;
stbcc__build_connected_components_for_clumps(g); // @OPTIMIZE: only do this if update was non-empty
}
size_t stbcc_grid_sizeof(void)
{
return sizeof(stbcc_grid);
}
void stbcc_init_grid(stbcc_grid *g, unsigned char *map, int w, int h)
{
int i,j,k;
assert(w % STBCC__CLUSTER_SIZE_X == 0);
assert(h % STBCC__CLUSTER_SIZE_Y == 0);
assert(w % 8 == 0);
g->w = w;
g->h = h;
g->cw = w >> STBCC_CLUSTER_SIZE_X_LOG2;
g->ch = h >> STBCC_CLUSTER_SIZE_Y_LOG2;
g->in_batched_update = 0;
#if 0
for (j=0; j < STBCC__CLUSTER_COUNT_Y; ++j)
for (i=0; i < STBCC__CLUSTER_COUNT_X; ++i)
g->cluster_dirty[j][i] = 0;
#endif
for (j=0; j < h; ++j) {
for (i=0; i < w; i += 8) {
unsigned char c = 0;
for (k=0; k < 8; ++k)
if (map[j*w + (i+k)] == 0)
c |= (1 << k);
g->map[j][i>>3] = c;
}
}
for (j=0; j < g->ch; ++j)
for (i=0; i < g->cw; ++i)
stbcc__build_clumps_for_cluster(g, i, j);
for (j=0; j < g->ch; ++j)
for (i=0; i < g->cw; ++i)
stbcc__build_all_connections_for_cluster(g, i, j);
stbcc__build_connected_components_for_clumps(g);
for (j=0; j < g->h; ++j)
for (i=0; i < g->w; ++i)
assert(g->clump_for_node[j][i] <= STBCC__NULL_CLUMPID);
}
static void stbcc__add_clump_connection(stbcc_grid *g, int x1, int y1, int x2, int y2)
{
stbcc__cluster *cluster;
stbcc__clump *clump;
int cx1 = STBCC__CLUSTER_X_FOR_COORD_X(x1);
int cy1 = STBCC__CLUSTER_Y_FOR_COORD_Y(y1);
int cx2 = STBCC__CLUSTER_X_FOR_COORD_X(x2);
int cy2 = STBCC__CLUSTER_Y_FOR_COORD_Y(y2);
stbcc__clumpid c1 = g->clump_for_node[y1][x1];
stbcc__clumpid c2 = g->clump_for_node[y2][x2];
stbcc__relative_clumpid rc;
assert(cx1 != cx2 || cy1 != cy2);
assert(abs(cx1-cx2) + abs(cy1-cy2) == 1);
// add connection to c2 in c1
rc.clump_index = c2;
rc.cluster_dx = x2-x1;
rc.cluster_dy = y2-y1;
cluster = &g->cluster[cy1][cx1];
clump = &cluster->clump[c1];
assert(clump->num_adjacent <= clump->max_adjacent);
if (clump->num_adjacent == clump->max_adjacent)
g->cluster[cy1][cx1].rebuild_adjacency = 1;
else {
stbcc__relative_clumpid *adj = &cluster->adjacency_storage[clump->adjacent_clump_list_index];
assert(clump->num_adjacent < STBCC__MAX_EXITS_PER_CLUMP);
assert(clump->adjacent_clump_list_index + clump->num_adjacent <= STBCC__CLUSTER_ADJACENCY_COUNT);
adj[clump->num_adjacent++] = rc;
}
}
static void stbcc__remove_clump_connection(stbcc_grid *g, int x1, int y1, int x2, int y2)
{
stbcc__cluster *cluster;
stbcc__clump *clump;
stbcc__relative_clumpid *adj;
int i;
int cx1 = STBCC__CLUSTER_X_FOR_COORD_X(x1);
int cy1 = STBCC__CLUSTER_Y_FOR_COORD_Y(y1);
int cx2 = STBCC__CLUSTER_X_FOR_COORD_X(x2);
int cy2 = STBCC__CLUSTER_Y_FOR_COORD_Y(y2);
stbcc__clumpid c1 = g->clump_for_node[y1][x1];
stbcc__clumpid c2 = g->clump_for_node[y2][x2];
stbcc__relative_clumpid rc;
assert(cx1 != cx2 || cy1 != cy2);
assert(abs(cx1-cx2) + abs(cy1-cy2) == 1);
// add connection to c2 in c1
rc.clump_index = c2;
rc.cluster_dx = x2-x1;
rc.cluster_dy = y2-y1;
cluster = &g->cluster[cy1][cx1];
clump = &cluster->clump[c1];
adj = &cluster->adjacency_storage[clump->adjacent_clump_list_index];
for (i=0; i < clump->num_adjacent; ++i)
if (rc.clump_index == adj[i].clump_index &&
rc.cluster_dx == adj[i].cluster_dx &&
rc.cluster_dy == adj[i].cluster_dy)
break;
if (i < clump->num_adjacent)
adj[i] = adj[--clump->num_adjacent];
else
assert(0);
}
static void stbcc__add_connections_to_adjacent_cluster(stbcc_grid *g, int cx, int cy, int dx, int dy)
{
unsigned char connected[STBCC__MAX_EDGE_CLUMPS_PER_CLUSTER][STBCC__MAX_EDGE_CLUMPS_PER_CLUSTER/8] = { { 0 } };
int x = cx * STBCC__CLUSTER_SIZE_X;
int y = cy * STBCC__CLUSTER_SIZE_Y;
int step_x, step_y=0, i, j, k, n;
if (cx < 0 || cx >= g->cw || cy < 0 || cy >= g->ch)
return;
if (cx+dx < 0 || cx+dx >= g->cw || cy+dy < 0 || cy+dy >= g->ch)
return;
if (g->cluster[cy][cx].rebuild_adjacency)
return;
assert(abs(dx) + abs(dy) == 1);
if (dx == 1) {
i = STBCC__CLUSTER_SIZE_X-1;
j = 0;
step_x = 0;
step_y = 1;
n = STBCC__CLUSTER_SIZE_Y;
} else if (dx == -1) {
i = 0;
j = 0;
step_x = 0;
step_y = 1;
n = STBCC__CLUSTER_SIZE_Y;
} else if (dy == -1) {
i = 0;
j = 0;
step_x = 1;
step_y = 0;
n = STBCC__CLUSTER_SIZE_X;
} else if (dy == 1) {
i = 0;
j = STBCC__CLUSTER_SIZE_Y-1;
step_x = 1;
step_y = 0;
n = STBCC__CLUSTER_SIZE_X;
} else {
assert(0);
return;
}
for (k=0; k < n; ++k) {
if (STBCC__MAP_OPEN(g, x+i, y+j) && STBCC__MAP_OPEN(g, x+i+dx, y+j+dy)) {
stbcc__clumpid src = g->clump_for_node[y+j][x+i];
stbcc__clumpid dest = g->clump_for_node[y+j+dy][x+i+dx];
if (0 == (connected[src][dest>>3] & (1 << (dest & 7)))) {
assert((dest>>3) < sizeof(connected));
connected[src][dest>>3] |= 1 << (dest & 7);
stbcc__add_clump_connection(g, x+i, y+j, x+i+dx, y+j+dy);
if (g->cluster[cy][cx].rebuild_adjacency)
break;
}
}
i += step_x;
j += step_y;
}
}
static void stbcc__remove_connections_to_adjacent_cluster(stbcc_grid *g, int cx, int cy, int dx, int dy)
{
unsigned char disconnected[STBCC__MAX_EDGE_CLUMPS_PER_CLUSTER][STBCC__MAX_EDGE_CLUMPS_PER_CLUSTER/8] = { { 0 } };
int x = cx * STBCC__CLUSTER_SIZE_X;
int y = cy * STBCC__CLUSTER_SIZE_Y;
int step_x, step_y=0, i, j, k, n;
if (cx < 0 || cx >= g->cw || cy < 0 || cy >= g->ch)
return;
if (cx+dx < 0 || cx+dx >= g->cw || cy+dy < 0 || cy+dy >= g->ch)
return;
assert(abs(dx) + abs(dy) == 1);
if (dx == 1) {
i = STBCC__CLUSTER_SIZE_X-1;
j = 0;
step_x = 0;
step_y = 1;
n = STBCC__CLUSTER_SIZE_Y;
} else if (dx == -1) {
i = 0;
j = 0;
step_x = 0;
step_y = 1;
n = STBCC__CLUSTER_SIZE_Y;
} else if (dy == -1) {
i = 0;
j = 0;
step_x = 1;
step_y = 0;
n = STBCC__CLUSTER_SIZE_X;
} else if (dy == 1) {
i = 0;
j = STBCC__CLUSTER_SIZE_Y-1;
step_x = 1;
step_y = 0;
n = STBCC__CLUSTER_SIZE_X;
} else {
assert(0);
return;
}
for (k=0; k < n; ++k) {
if (STBCC__MAP_OPEN(g, x+i, y+j) && STBCC__MAP_OPEN(g, x+i+dx, y+j+dy)) {
stbcc__clumpid src = g->clump_for_node[y+j][x+i];
stbcc__clumpid dest = g->clump_for_node[y+j+dy][x+i+dx];
if (0 == (disconnected[src][dest>>3] & (1 << (dest & 7)))) {
disconnected[src][dest>>3] |= 1 << (dest & 7);
stbcc__remove_clump_connection(g, x+i, y+j, x+i+dx, y+j+dy);
}
}
i += step_x;
j += step_y;
}
}
static stbcc__tinypoint stbcc__incluster_find(stbcc__cluster_build_info *cbi, int x, int y)
{
stbcc__tinypoint p,q;
p = cbi->parent[y][x];
if (p.x == x && p.y == y)
return p;
q = stbcc__incluster_find(cbi, p.x, p.y);
cbi->parent[y][x] = q;
return q;
}
static void stbcc__incluster_union(stbcc__cluster_build_info *cbi, int x1, int y1, int x2, int y2)
{
stbcc__tinypoint p = stbcc__incluster_find(cbi, x1,y1);
stbcc__tinypoint q = stbcc__incluster_find(cbi, x2,y2);
if (p.x == q.x && p.y == q.y)
return;
cbi->parent[p.y][p.x] = q;
}
static void stbcc__switch_root(stbcc__cluster_build_info *cbi, int x, int y, stbcc__tinypoint p)
{
cbi->parent[p.y][p.x].x = x;
cbi->parent[p.y][p.x].y = y;
cbi->parent[y][x].x = x;
cbi->parent[y][x].y = y;
}
static void stbcc__build_clumps_for_cluster(stbcc_grid *g, int cx, int cy)
{
stbcc__cluster *c;
stbcc__cluster_build_info cbi;
int label=0;
int i,j;
int x = cx * STBCC__CLUSTER_SIZE_X;
int y = cy * STBCC__CLUSTER_SIZE_Y;
// set initial disjoint set forest state
for (j=0; j < STBCC__CLUSTER_SIZE_Y; ++j) {
for (i=0; i < STBCC__CLUSTER_SIZE_X; ++i) {
cbi.parent[j][i].x = i;
cbi.parent[j][i].y = j;
}
}
// join all sets that are connected
for (j=0; j < STBCC__CLUSTER_SIZE_Y; ++j) {
// check down only if not on bottom row
if (j < STBCC__CLUSTER_SIZE_Y-1)
for (i=0; i < STBCC__CLUSTER_SIZE_X; ++i)
if (STBCC__MAP_OPEN(g,x+i,y+j) && STBCC__MAP_OPEN(g,x+i ,y+j+1))
stbcc__incluster_union(&cbi, i,j, i,j+1);
// check right for everything but rightmost column
for (i=0; i < STBCC__CLUSTER_SIZE_X-1; ++i)
if (STBCC__MAP_OPEN(g,x+i,y+j) && STBCC__MAP_OPEN(g,x+i+1,y+j ))
stbcc__incluster_union(&cbi, i,j, i+1,j);
}
// label all non-empty clumps along edges so that all edge clumps are first
// in list; this means in degenerate case we can skip traversing non-edge clumps.
// because in the first pass we only label leaders, we swap the leader to the
// edge first
// first put solid labels on all the edges; these will get overwritten if they're open
for (j=0; j < STBCC__CLUSTER_SIZE_Y; ++j)
cbi.label[j][0] = cbi.label[j][STBCC__CLUSTER_SIZE_X-1] = STBCC__NULL_CLUMPID;
for (i=0; i < STBCC__CLUSTER_SIZE_X; ++i)
cbi.label[0][i] = cbi.label[STBCC__CLUSTER_SIZE_Y-1][i] = STBCC__NULL_CLUMPID;
for (j=0; j < STBCC__CLUSTER_SIZE_Y; ++j) {
i = 0;
if (STBCC__MAP_OPEN(g, x+i, y+j)) {
stbcc__tinypoint p = stbcc__incluster_find(&cbi, i,j);
if (p.x == i && p.y == j)
// if this is the leader, give it a label
cbi.label[j][i] = label++;
else if (!(p.x == 0 || p.x == STBCC__CLUSTER_SIZE_X-1 || p.y == 0 || p.y == STBCC__CLUSTER_SIZE_Y-1)) {
// if leader is in interior, promote this edge node to leader and label
stbcc__switch_root(&cbi, i, j, p);
cbi.label[j][i] = label++;
}
// else if leader is on edge, do nothing (it'll get labelled when we reach it)
}
i = STBCC__CLUSTER_SIZE_X-1;
if (STBCC__MAP_OPEN(g, x+i, y+j)) {
stbcc__tinypoint p = stbcc__incluster_find(&cbi, i,j);
if (p.x == i && p.y == j)
cbi.label[j][i] = label++;
else if (!(p.x == 0 || p.x == STBCC__CLUSTER_SIZE_X-1 || p.y == 0 || p.y == STBCC__CLUSTER_SIZE_Y-1)) {
stbcc__switch_root(&cbi, i, j, p);
cbi.label[j][i] = label++;
}
}
}
for (i=1; i < STBCC__CLUSTER_SIZE_Y-1; ++i) {
j = 0;
if (STBCC__MAP_OPEN(g, x+i, y+j)) {
stbcc__tinypoint p = stbcc__incluster_find(&cbi, i,j);
if (p.x == i && p.y == j)
cbi.label[j][i] = label++;
else if (!(p.x == 0 || p.x == STBCC__CLUSTER_SIZE_X-1 || p.y == 0 || p.y == STBCC__CLUSTER_SIZE_Y-1)) {
stbcc__switch_root(&cbi, i, j, p);
cbi.label[j][i] = label++;
}
}
j = STBCC__CLUSTER_SIZE_Y-1;
if (STBCC__MAP_OPEN(g, x+i, y+j)) {
stbcc__tinypoint p = stbcc__incluster_find(&cbi, i,j);
if (p.x == i && p.y == j)
cbi.label[j][i] = label++;
else if (!(p.x == 0 || p.x == STBCC__CLUSTER_SIZE_X-1 || p.y == 0 || p.y == STBCC__CLUSTER_SIZE_Y-1)) {
stbcc__switch_root(&cbi, i, j, p);
cbi.label[j][i] = label++;
}
}
}
c = &g->cluster[cy][cx];
c->num_edge_clumps = label;
// label any internal clusters
for (j=1; j < STBCC__CLUSTER_SIZE_Y-1; ++j) {
for (i=1; i < STBCC__CLUSTER_SIZE_X-1; ++i) {
stbcc__tinypoint p = cbi.parent[j][i];
if (p.x == i && p.y == j) {
if (STBCC__MAP_OPEN(g,x+i,y+j))
cbi.label[j][i] = label++;
else
cbi.label[j][i] = STBCC__NULL_CLUMPID;
}
}
}
// label all other nodes
for (j=0; j < STBCC__CLUSTER_SIZE_Y; ++j) {
for (i=0; i < STBCC__CLUSTER_SIZE_X; ++i) {
stbcc__tinypoint p = stbcc__incluster_find(&cbi, i,j);
if (p.x != i || p.y != j) {
if (STBCC__MAP_OPEN(g,x+i,y+j))
cbi.label[j][i] = cbi.label[p.y][p.x];
}
if (STBCC__MAP_OPEN(g,x+i,y+j))
assert(cbi.label[j][i] != STBCC__NULL_CLUMPID);
}
}
c->num_clumps = label;
for (i=0; i < label; ++i) {
c->clump[i].num_adjacent = 0;
c->clump[i].max_adjacent = 0;
}
for (j=0; j < STBCC__CLUSTER_SIZE_Y; ++j)
for (i=0; i < STBCC__CLUSTER_SIZE_X; ++i) {
g->clump_for_node[y+j][x+i] = cbi.label[j][i]; // @OPTIMIZE: remove cbi.label entirely
assert(g->clump_for_node[y+j][x+i] <= STBCC__NULL_CLUMPID);
}
// set the global label for all interior clumps since they can't have connections,
// so we don't have to do this on the global pass (brings from O(N) to O(N^0.75))
for (i=(int) c->num_edge_clumps; i < (int) c->num_clumps; ++i) {
stbcc__global_clumpid gc;
gc.f.cluster_x = cx;
gc.f.cluster_y = cy;