-
Notifications
You must be signed in to change notification settings - Fork 34
/
visualize.py
125 lines (107 loc) · 4.24 KB
/
visualize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
import os
import cv2
import time
import torch
import numpy as np
from argparse import ArgumentParser
import transforms
parser = ArgumentParser(description='e-Lab Segmentation Visualizer')
_ = parser.add_argument
_('--model_path', type=str, default='/media/', help='model to load')
_('--data_path', type=str, default='/media/', help='image folder')
_('--mode', type=int, default=0, help='mode 0, 1, 2')
_('--fullscreen', action='store_true', help='Show output in full screen')
args = parser.parse_args()
# Clear screen
print('\033[0;0f\033[0J')
# Color Palette
CP_R = '\033[31m'
CP_G = '\033[32m'
CP_B = '\033[34m'
CP_Y = '\033[33m'
CP_C = '\033[0m'
# Define color scheme
color_map = np.array([
[0, 0, 0], # Unlabled
[128, 64, 128], # Road
[244, 35, 232], # Sidewalk
[70, 70, 70], # Building
[102, 102, 156], # Wall
[190, 153, 153], # Fence
[153, 153, 153], # Pole
[250, 170, 30], # Traffic light
[220, 220, 0], # Traffic signal
[107, 142, 35], # Vegetation
[152, 251, 152], # Terrain
[70, 130, 180], # Sky
[220, 20, 60], # Person
[255, 0, 0], # Rider
[0, 0, 142], # Car
[0, 0, 70], # Truck
[0, 60, 100], # Bus
[0, 80, 100], # Train
[0, 0, 230], # Motorcycle
[119, 11, 32] # Bicycle
], dtype=np.uint8)
# Load model
m = torch.load('/media/HDD2/Models/abhi/2/model_best.pth')
model = torch.nn.DataParallel(m['model_def'](20))
model.load_state_dict(m['state_dict'])
model.cuda()
model.eval()
root_dir = os.path.join(args.data_path, 'stuttgart_0' + str(args.mode))
first_idx = [1, 3500, 5100]
last_idx = [599, 4599, 6299]
idx = first_idx[args.mode]
fps = 'NA'
pred_map = np.zeros((256, 512, 3), dtype=np.uint8)
pred_map = np.zeros((512, 1024, 3), dtype=np.uint8)
win_title = 'Overlayed Image'
if args.fullscreen:
cv2.namedWindow(win_title, cv2.WND_PROP_FULLSCREEN)
cv2.setWindowProperty(win_title, cv2.WND_PROP_FULLSCREEN, cv2.WINDOW_FULLSCREEN)
while idx <= last_idx[args.mode]:
# Load image, resize and convert into a 'batchified' cuda tensor
start_time = time.time()
filename = '{}/stuttgart_0{:d}_000000_{:06d}_leftImg8bit.png'.format(root_dir, args.mode, idx)
if os.path.isfile(filename):
x = cv2.imread(filename)
read_time = time.time() - start_time
resize = transforms.Resize(0.5)
x = resize(x)
prep_data = transforms.Compose([
#transforms.Crop((512, 512)),
transforms.ToTensor(),
transforms.Normalize([[0.485, 0.456, 0.406], [0.229, 0.224, 0.225]])
])
input_image = prep_data(x)
#input_image = torch.from_numpy(cv2.cvtColor(x, cv2.COLOR_BGR2RGB).transpose(2, 0, 1))/255
input_image = input_image.unsqueeze(0).float().cuda()
prep_time = time.time() - start_time - read_time
# Get neural network output
y = model(torch.autograd.Variable(input_image))
y = y.squeeze()
pred = y.data.cpu().numpy()
model_time = time.time() - start_time - read_time - prep_time
# Calculate prediction and colorized segemented output
prediction = np.argmax(pred, axis=0)
num_classes = 20
pred_map *= 0
for i in range(num_classes):
pred_map[prediction == i] = color_map[i]
pred_map_BGR = cv2.cvtColor(pred_map, cv2.COLOR_RGB2BGR)
overlay = cv2.addWeighted(x, 0.5, pred_map_BGR, 0.5, 0)
pred_time = time.time() - start_time - read_time - prep_time - model_time
#cv2.imshow('Original Image', x_rescaled)
#cv2.imshow('Segmented Output', pred_map_BGR)
cv2.imshow(win_title, overlay)
disp_time = time.time() - start_time - read_time - prep_time - model_time - pred_time
fps = 1/(time.time() - start_time)
print("{}Read: {}{:4.2f} ms | {}Norm:: {}{:4.2f} ms | {}Model: {}{:4.2f} ms | {}Predict: {}{:4.2f} ms | {}Display: {}{:4.2f} ms".format(
CP_Y, CP_C, read_time*1000, CP_G, CP_C, prep_time*1000, CP_G, CP_C, model_time*1000,
CP_R, CP_C, pred_time*1000, CP_B, CP_C, disp_time*1000))
else:
print("{}Warning{}!!! {}{} image unavailable{}.".format(CP_R, CP_C, filename, CP_R, CP_C))
idx += 1
if cv2.waitKey(1) == 27: # ESC to stop
break