-
Notifications
You must be signed in to change notification settings - Fork 11
/
vgg.lua
54 lines (48 loc) · 1.79 KB
/
vgg.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
local classes = 1000
local modelType = 'A' -- on a titan black, B/D/E run out of memory even for batch-size 32
-- Create tables describing VGG configurations A, B, D, E
local cfg = {}
if modelType == 'A' then
cfg = {64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'}
elseif modelType == 'B' then
cfg = {64, 64, 'M', 128, 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'}
elseif modelType == 'D' then
cfg = {64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512, 512, 512, 'M'}
elseif modelType == 'E' then
cfg = {64, 64, 'M', 128, 128, 'M', 256, 256, 256, 256, 'M', 512, 512, 512, 512, 'M', 512, 512, 512, 512, 'M'}
else
error('Unknown model type: ' .. modelType .. ' | Please specify a modelType A or B or D or E')
end
local features = nn.Sequential()
do
local iChannels = 3;
for k,v in ipairs(cfg) do
if v == 'M' then
features:add(nn.SpatialMaxPooling(2,2,2,2))
else
local oChannels = v;
local conv3 = nn.SpatialConvolution(iChannels,oChannels,3,3,1,1,1,1);
features:add(conv3)
features:add(nn.ReLU(true))
iChannels = oChannels;
end
end
end
--features:cuda()
--features = makeDataParallel(features, nGPU) -- defined in util.lua
local classifier = nn.Sequential()
classifier:add(nn.View(512*7*7))
classifier:add(nn.Linear(512*7*7, 4096))
classifier:add(nn.Threshold(0, 1e-6))
--classifier:add(nn.BatchNormalization(4096, 1e-3))
classifier:add(nn.Dropout(0.5))
classifier:add(nn.Linear(4096, 4096))
classifier:add(nn.Threshold(0, 1e-6))
--classifier:add(nn.BatchNormalization(4096, 1e-3))
classifier:add(nn.Dropout(0.5))
classifier:add(nn.Linear(4096, classes))
classifier:add(nn.LogSoftMax())
--classifier:cuda()
local model = nn.Sequential()
model:add(features):add(classifier)
return model