-
Notifications
You must be signed in to change notification settings - Fork 109
/
detector.py
executable file
·264 lines (212 loc) · 10.5 KB
/
detector.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
#!/usr/bin/env python3
import os
from skimage.transform import resize as imresize
import numpy as np
import tensorflow as tf
from PIL import Image, ImageDraw, ImageFont
from tensorflow.python.ops.metrics_impl import mean_iou
import logging
from vgg import VGG
from voc_loader import VOCLoader
from boxer import PriorBoxGrid
from config import args, train_dir
from paths import CKPT_ROOT, EVAL_DIR, RESULTS_DIR
from utils import decode_bboxes, batch_iou
slim = tf.contrib.slim
streaming_mean_iou = tf.contrib.metrics.streaming_mean_iou
log = logging.getLogger()
class Detector(object):
def __init__(self, sess, net, loader, config, no_gt=False, folder=None):
self.sess = sess
self.net = net
self.loader = loader
self.config = config
self.fm_sizes = self.config['fm_sizes']
self.no_gt = no_gt
self.bboxer = PriorBoxGrid(self.config)
self.build_detector()
if folder is not None:
self.directory = folder
else:
self.directory = os.path.join(RESULTS_DIR, args.run_name)
if not os.path.exists(self.directory):
os.makedirs(self.directory)
@staticmethod
def draw_rectangle(draw, coordinates, color, width=1):
for i in range(width):
rect_start = (coordinates[0] - i, coordinates[1] - i)
rect_end = (coordinates[2] + i, coordinates[3] + i)
draw.rectangle((rect_start, rect_end), outline=color)
def draw(self, img, dets, cats, scores, name, gt_bboxes, gt_cats):
"""Visualize objects detected by the network by putting bounding boxes"""
colors = np.load('Extra/colors.npy').tolist()
font = ImageFont.truetype("Extra/FreeSansBold.ttf", 14)
h, w = img.shape[:2]
image = Image.fromarray((img * 255).astype('uint8'))
dr = ImageDraw.Draw(image)
if not args.segment:
image.save(self.directory + '/%s.jpg' % name, 'JPEG')
for i in range(len(cats)):
cat = cats[i]
score = scores[i]
bbox = np.array(dets[i])
bbox[[2, 3]] += bbox[[0, 1]]
# color = 'green' if matched_det[i] else 'red'
color = colors[cat]
self.draw_rectangle(dr, bbox, color, width=5)
dr.text(bbox[:2], self.loader.ids_to_cats[cat] + ' ' + str(score),
fill=color, font=font)
draw_gt = False
if draw_gt:
match = quick_matching(dets, gt_bboxes, cats, gt_cats)
matched_gt = match.sum(0)
for i in range(len(gt_cats)):
x, y, w, h = gt_bboxes[i]
color = 'white' if matched_gt[i] else 'blue'
bbox = (x, y, x + w, y + h)
self.draw_rectangle(dr, bbox, color, width=3)
dr.text((x, y), self.loader.ids_to_cats[gt_cats[i]], fill=color)
image.save(self.directory + '/%s_det_%i.jpg' % (name, int(100 *
args.eval_min_conf)), 'JPEG')
del dr
def draw_seg(self, img, seg_gt, segmentation, name):
"""Applies generated segmentation mask to an image"""
palette = np.load('Extra/palette.npy').tolist()
img_size = (img.shape[0], img.shape[1])
segmentation = imresize(segmentation, img_size, order=0, preserve_range=True).astype(int)
image = Image.fromarray((img * 255).astype('uint8'))
segmentation_draw = Image.fromarray((segmentation).astype('uint8'), 'P')
segmentation_draw.putpalette(palette)
segmentation_draw.save(self.directory + '/%s_segmentation.png' % name, 'PNG')
image.save(self.directory + '/%s.jpg' % name, 'JPEG')
if seg_gt:
seg_gt_draw = Image.fromarray((seg_gt).astype('uint8'), 'P')
seg_gt_draw.putpalette(palette)
seg_gt_draw.save(self.directory + '/%s_seg_gt.png' % name, 'PNG')
def restore_from_ckpt(self, ckpt):
ckpt_path = os.path.join(CKPT_ROOT, args.run_name, 'model.ckpt-%i000' % ckpt)
log.debug("Restoring checkpoint %s" % ckpt_path)
self.sess.run(tf.local_variables_initializer())
saver = tf.train.Saver(tf.global_variables())
saver.restore(self.sess, ckpt_path)
def nms(self, localization, confidence, tiling):
good_bboxes = decode_bboxes(localization, tiling)
not_crap_mask = tf.reduce_max(confidence[:, 1:], axis=-1) >= args.conf_thresh
good_bboxes = tf.boolean_mask(good_bboxes, not_crap_mask)
confidence = tf.boolean_mask(confidence, not_crap_mask)
self.detection_list = []
self.score_list = []
for i in range(1, self.loader.num_classes):
class_mask = tf.greater(confidence[:, i], args.conf_thresh)
class_scores = tf.boolean_mask(confidence[:, i], class_mask)
class_bboxes = tf.boolean_mask(good_bboxes, class_mask)
K = tf.minimum(tf.size(class_scores), args.top_k_nms)
_, top_k_inds = tf.nn.top_k(class_scores, K)
top_class_scores = tf.gather(class_scores, top_k_inds)
top_class_bboxes = tf.gather(class_bboxes, top_k_inds)
final_inds = tf.image.non_max_suppression(top_class_bboxes,
top_class_scores,
max_output_size=args.top_k_after_nms,
iou_threshold=args.nms_thresh)
final_class_bboxes = tf.gather(top_class_bboxes, final_inds)
final_scores = tf.gather(top_class_scores, final_inds)
self.detection_list.append(final_class_bboxes)
self.score_list.append(final_scores)
def build_detector(self):
img_size = self.config['image_size']
self.image_ph = tf.placeholder(shape=[None, None, 3],
dtype=tf.float32, name='img_ph')
self.seg_ph = tf.placeholder(shape=[None, None], dtype=tf.int32, name='seg_ph')
img = tf.image.resize_bilinear(tf.expand_dims(self.image_ph, 0),
(img_size, img_size))
self.net.create_trunk(img)
if args.detect:
self.net.create_multibox_head(self.loader.num_classes)
confidence = tf.nn.softmax(tf.squeeze(self.net.outputs['confidence']))
location = tf.squeeze(self.net.outputs['location'])
self.nms(location, confidence, self.bboxer.tiling)
if args.segment:
self.net.create_segmentation_head(self.loader.num_classes)
self.segmentation = self.net.outputs['segmentation']
seg_shape = tf.shape(self.image_ph)[:2]
self.segmentation = tf.image.resize_bilinear(self.segmentation, seg_shape)
self.segmentation = tf.cast(tf.argmax(tf.squeeze(self.segmentation), axis=-1), tf.int32)
self.segmentation = tf.reshape(self.segmentation, seg_shape)
self.segmentation.set_shape([None, None])
if not self.no_gt:
easy_mask = self.seg_ph <= self.loader.num_classes
predictions = tf.boolean_mask(self.segmentation, easy_mask)
labels = tf.boolean_mask(self.seg_ph, easy_mask)
self.mean_iou, self.iou_update = mean_iou(predictions, labels, self.loader.num_classes)
else:
self.mean_iou = tf.constant(0)
self.iou_update = tf.constant(0)
def process_detection(self, outputs, img, w, h, gt_bboxes, gt_cats, name, draw):
detection_vec, score_vec = outputs[:2]
dets, scores, cats = [], [], []
no_dets = True
for i in range(self.loader.num_classes-1):
if score_vec[i].size > 0:
no_dets = False
dets.append(detection_vec[i])
scores.append(score_vec[i])
cats.append(np.zeros(len(score_vec[i]), dtype='int') + i + 1)
if not no_dets:
dets = np.vstack(dets)
scores = np.concatenate(scores, axis=0)
cats = np.concatenate(cats, axis=0)
top_k_inds = np.argsort(scores)[::-1]
if scores.size > args.top_k_post_nms:
top_k_inds = top_k_inds[0:args.top_k_post_nms]
dets = dets[top_k_inds]
scores = scores[top_k_inds]
cats = cats[top_k_inds]
mask_high = scores >= args.eval_min_conf
dets = dets[mask_high]
scores = scores[mask_high]
cats = cats[mask_high]
dets[:, :] = dets[:, [1, 0, 3, 2]]
dets[:, [2, 3]] -= dets[:, [0, 1]]
dets[:, [0, 2]] *= w
dets[:, [1, 3]] *= h
if draw:
self.draw(img, dets, cats, scores, name, gt_bboxes, gt_cats)
return(dets, scores, cats)
def process_segmentation(self, outputs, img, seg_gt, name, draw):
segmentation, iou, _ = outputs[-3:]
if draw:
self.draw_seg(img, seg_gt, segmentation, name)
return segmentation, iou
def get_mean_iou(self):
iou = self.sess.run(self.mean_iou)
return iou
def feed_forward(self, img, seg_gt, w, h, name, gt_bboxes, gt_cats, draw=False):
feed_dict = {self.image_ph: img}
net_out = []
if args.detect:
net_out.extend([self.detection_list, self.score_list])
if args.segment:
seg_gt_ = np.zeros(img.shape[:2]) if seg_gt is None else seg_gt
seg_dict = {self.seg_ph: seg_gt_}
feed_dict.update(seg_dict)
net_out.extend([self.segmentation, self.mean_iou, self.iou_update])
# outputs order with det and seg modes on:
# detection_vec, score_vec, segmentation, iou, _
outputs = self.sess.run(net_out, feed_dict=feed_dict)
results = []
if args.detect:
dets, scores, cats = self.process_detection(outputs, img, w, h,
gt_bboxes, gt_cats,
name, draw=draw)
results.extend([dets, scores, cats])
if args.segment:
segmentation, iou = self.process_segmentation(outputs, img, seg_gt, name, draw)
results.extend([segmentation, iou])
return results
def quick_matching(det_boxes, gt_boxes, det_cats, gt_cats):
iou_mask = batch_iou(det_boxes, gt_boxes) >= 0.5
det_cats = np.expand_dims(det_cats, axis=1)
gt_cats = np.expand_dims(gt_cats, axis=0)
cat_mask = (det_cats == gt_cats)
matching = np.logical_and(iou_mask, cat_mask)
return matching