-
Notifications
You must be signed in to change notification settings - Fork 273
/
llama_attn_replace.py
477 lines (402 loc) · 19.1 KB
/
llama_attn_replace.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
# Modified based on https://github.com/lm-sys/FastChat
import warnings
from typing import Optional, Tuple
import torch
from torch import nn
import transformers
from einops import rearrange
from flash_attn import __version__ as flash_attn_version
from flash_attn.bert_padding import pad_input, unpad_input
from flash_attn.flash_attn_interface import (
flash_attn_func,
flash_attn_varlen_kvpacked_func,
flash_attn_varlen_qkvpacked_func
)
from transformers.models.llama.modeling_llama import apply_rotary_pos_emb, repeat_kv, rotate_half
from flash_attn.bert_padding import unpad_input, pad_input
import math
group_size_ratio = 1/4
def forward_flashattn(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: bool = False,
use_cache: bool = False,
padding_mask: Optional[torch.LongTensor] = None,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
"""Input shape: Batch x Time x Channel
attention_mask: [bsz, q_len]
"""
if not self.training:
warnings.warn("This function should be used just for training as it may exhibit reduced inference performance. For inference, please use forward_flashattn_inference.")
if output_attentions:
warnings.warn(
"Output attentions is not supported for patched `LlamaAttention`, returning `None` instead."
)
bsz, q_len, _ = hidden_states.size()
query_states = (
self.q_proj(hidden_states)
.view(bsz, q_len, self.num_heads, self.head_dim)
.transpose(1, 2)
)
key_states = (
self.k_proj(hidden_states)
.view(bsz, q_len, self.num_key_value_heads, self.head_dim)
.transpose(1, 2)
)
value_states = (
self.v_proj(hidden_states)
.view(bsz, q_len, self.num_key_value_heads, self.head_dim)
.transpose(1, 2)
)
# [bsz, q_len, nh, hd]
# [bsz, nh, q_len, hd]
kv_seq_len = key_states.shape[-2]
if past_key_value is not None:
kv_seq_len += past_key_value[0].shape[-2]
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
query_states, key_states = apply_rotary_pos_emb(
query_states, key_states, cos, sin, position_ids
)
# Past Key value support
if past_key_value is not None:
# reuse k, v, self_attention
key_states = torch.cat([past_key_value[0], key_states], dim=2)
value_states = torch.cat([past_key_value[1], value_states], dim=2)
past_key_value = (key_states, value_states) if use_cache else None
# repeat k/v heads if n_kv_heads < n_heads
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
# Flash attention codes from
# https://github.com/HazyResearch/flash-attention/blob/main/flash_attn/flash_attention.py
# transform the data into the format required by flash attention
qkv = torch.stack(
[query_states, key_states, value_states], dim=2
) # [bsz, nh, 3, q_len, hd]
qkv = qkv.transpose(1, 3) # [bsz, q_len, 3, nh, hd]
# We have disabled _prepare_decoder_attention_mask in LlamaModel
# the attention_mask should be the same as the key_padding_mask
key_padding_mask = attention_mask.repeat(2, 1)
nheads = qkv.shape[-2]
# shift
group_size = int(q_len * group_size_ratio)
if q_len % group_size > 0:
raise ValueError("q_len %d should be divisible by group size %d." % (q_len, group_size))
qkv = qkv.reshape(bsz, q_len, 3, 2, self.num_heads // 2, self.head_dim).permute(0, 3, 1, 2, 4, 5).reshape(bsz * 2,
q_len, 3,
self.num_heads // 2,
self.head_dim)
x = rearrange(qkv, "b s three h d -> b s (three h d)")
x_unpad, indices, cu_q_lens, max_s = unpad_input(x, key_padding_mask)
cu_q_len_tmp = torch.arange(0, max_s, group_size, device=key_padding_mask.device, dtype=cu_q_lens.dtype)
cu_q_len_tmp = torch.stack([cu_q_len_tmp, cu_q_len_tmp + group_size // 2]).repeat(bsz, 1) + cu_q_lens[:-1].unsqueeze(-1)
cu_q_lens = torch.cat([cu_q_len_tmp, cu_q_lens[1:].unsqueeze(-1)], dim=-1).view(-1)
x_unpad = rearrange(
x_unpad, "nnz (three h d) -> nnz three h d", three=3, h=nheads // 2
)
output_unpad = flash_attn_varlen_qkvpacked_func(
x_unpad, cu_q_lens, group_size, 0.0, softmax_scale=None, causal=True
)
output = rearrange(
pad_input(
rearrange(output_unpad, "nnz h d -> nnz (h d)"), indices, bsz * 2, q_len
),
"b s (h d) -> b s h d",
h=nheads // 2,
)
output = output.reshape(bsz, 2, q_len, nheads // 2, self.head_dim).transpose(1, 2).reshape(bsz, q_len, nheads,
self.head_dim)
return self.o_proj(rearrange(output, "b s h d -> b s (h d)")), None, past_key_value
def forward_flashattn_full(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: bool = False,
use_cache: bool = False,
padding_mask: Optional[torch.LongTensor] = None,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
"""Input shape: Batch x Time x Channel
attention_mask: [bsz, q_len]
"""
if output_attentions:
warnings.warn(
"Output attentions is not supported for patched `LlamaAttention`, returning `None` instead."
)
bsz, q_len, _ = hidden_states.size()
query_states = (
self.q_proj(hidden_states)
.view(bsz, q_len, self.num_heads, self.head_dim)
.transpose(1, 2)
)
key_states = (
self.k_proj(hidden_states)
.view(bsz, q_len, self.num_key_value_heads, self.head_dim)
.transpose(1, 2)
)
value_states = (
self.v_proj(hidden_states)
.view(bsz, q_len, self.num_key_value_heads, self.head_dim)
.transpose(1, 2)
)
# [bsz, q_len, nh, hd]
# [bsz, nh, q_len, hd]
kv_seq_len = key_states.shape[-2]
if past_key_value is not None:
kv_seq_len += past_key_value[0].shape[-2]
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
query_states, key_states = apply_rotary_pos_emb(
query_states, key_states, cos, sin, position_ids
)
# Past Key value support
if past_key_value is not None:
# reuse k, v, self_attention
key_states = torch.cat([past_key_value[0], key_states], dim=2)
value_states = torch.cat([past_key_value[1], value_states], dim=2)
past_key_value = (key_states, value_states) if use_cache else None
# repeat k/v heads if n_kv_heads < n_heads
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
# Flash attention codes from
# https://github.com/HazyResearch/flash-attention/blob/main/flash_attn/flash_attention.py
# transform the data into the format required by flash attention
qkv = torch.stack(
[query_states, key_states, value_states], dim=2
) # [bsz, nh, 3, q_len, hd]
qkv = qkv.transpose(1, 3) # [bsz, q_len, 3, nh, hd]
# We have disabled _prepare_decoder_attention_mask in LlamaModel
# the attention_mask should be the same as the key_padding_mask
key_padding_mask = attention_mask
nheads = qkv.shape[-2]
x = rearrange(qkv, "b s three h d -> b s (three h d)")
x_unpad, indices, cu_q_lens, max_s = unpad_input(x, key_padding_mask)
x_unpad = rearrange(
x_unpad, "nnz (three h d) -> nnz three h d", three=3, h=nheads
)
output_unpad = flash_attn_varlen_qkvpacked_func(
x_unpad, cu_q_lens, max_s, 0.0, softmax_scale=None, causal=True
)
output = rearrange(
pad_input(
rearrange(output_unpad, "nnz h d -> nnz (h d)"), indices, bsz, q_len
),
"b s (h d) -> b s h d",
h=nheads,
)
output = output.reshape(bsz, q_len, self.num_heads, self.head_dim)
return self.o_proj(rearrange(output, "b s h d -> b s (h d)")), None, past_key_value
def forward_noflashattn(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: bool = False,
use_cache: bool = False,
padding_mask: Optional[torch.LongTensor] = None,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
bsz, q_len, _ = hidden_states.size()
group_size = int(q_len * group_size_ratio)
if q_len % group_size > 0:
raise ValueError("q_len %d should be divisible by group size %d."%(q_len, group_size))
num_group = q_len // group_size
if self.config.pretraining_tp > 1:
key_value_slicing = (self.num_key_value_heads * self.head_dim) // self.config.pretraining_tp
query_slices = self.q_proj.weight.split(
(self.num_heads * self.head_dim) // self.config.pretraining_tp, dim=0
)
key_slices = self.k_proj.weight.split(key_value_slicing, dim=0)
value_slices = self.v_proj.weight.split(key_value_slicing, dim=0)
query_states = [F.linear(hidden_states, query_slices[i]) for i in range(self.config.pretraining_tp)]
query_states = torch.cat(query_states, dim=-1)
key_states = [F.linear(hidden_states, key_slices[i]) for i in range(self.config.pretraining_tp)]
key_states = torch.cat(key_states, dim=-1)
value_states = [F.linear(hidden_states, value_slices[i]) for i in range(self.config.pretraining_tp)]
value_states = torch.cat(value_states, dim=-1)
else:
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
kv_seq_len = key_states.shape[-2]
if past_key_value is not None:
kv_seq_len += past_key_value[0].shape[-2]
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
if past_key_value is not None:
# reuse k, v, self_attention
key_states = torch.cat([past_key_value[0], key_states], dim=2)
value_states = torch.cat([past_key_value[1], value_states], dim=2)
past_key_value = (key_states, value_states) if use_cache else None
# repeat k/v heads if n_kv_heads < n_heads
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
# shift
def shift(qkv, bsz, q_len, group_size, num_heads, head_dim):
qkv[:, num_heads // 2:] = qkv[:, num_heads // 2:].roll(-group_size // 2, dims=2)
qkv = qkv.transpose(1, 2).reshape(bsz * (q_len // group_size), group_size, num_heads, head_dim).transpose(1, 2)
return qkv
query_states = shift(query_states, bsz, q_len, group_size, self.num_heads, self.head_dim)
key_states = shift(key_states, bsz, q_len, group_size, self.num_heads, self.head_dim)
value_states = shift(value_states, bsz, q_len, group_size, self.num_heads, self.head_dim)
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
if attn_weights.size() != (bsz * num_group, self.num_heads, group_size, group_size):
raise ValueError(
f"Attention weights should be of size {(bsz * num_group, self.num_heads, group_size, group_size)}, but is"
f" {attn_weights.size()}"
)
attention_mask = attention_mask[:, :, :group_size, :group_size].repeat(num_group, 1, 1, 1)
if attention_mask is not None:
if attention_mask.size() != (bsz * num_group, 1, group_size, group_size):
raise ValueError(
f"Attention mask should be of size {(bsz * num_group, 1, group_size, group_size)}, but is {attention_mask.size()}"
)
attn_weights = attn_weights + attention_mask
# upcast attention to fp32
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
attn_output = torch.matmul(attn_weights, value_states)
if attn_output.size() != (bsz * num_group, self.num_heads, group_size, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz * num_group, self.num_heads, group_size, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.reshape(bsz, q_len, self.num_heads, self.head_dim)
# shift back
attn_output[:, :, self.num_heads//2:] = attn_output[:, :, self.num_heads//2:].roll(group_size//2, dims=1)
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
if self.config.pretraining_tp > 1:
attn_output = attn_output.split(self.hidden_size // self.config.pretraining_tp, dim=2)
o_proj_slices = self.o_proj.weight.split(self.hidden_size // self.config.pretraining_tp, dim=1)
attn_output = sum([F.linear(attn_output[i], o_proj_slices[i]) for i in range(self.config.pretraining_tp)])
else:
attn_output = self.o_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights, past_key_value
# Disable the transformation of the attention mask in LlamaModel as the flash attention
# requires the attention mask to be the same as the key_padding_mask
def _prepare_decoder_attention_mask(
self, attention_mask, input_shape, inputs_embeds, past_key_values_length
):
# [bsz, seq_len]
return attention_mask
def apply_rotary_pos_emb_inference(q, k, cos_sin, position_ids):
gather_indices = position_ids[:, :, None, None] # [bsz, seq_len, 1, 1]
gather_indices = gather_indices.repeat(
1, 1, cos_sin[0].shape[1], cos_sin[0].shape[3]
)
bsz = gather_indices.shape[0]
cos, sin = (
torch.gather(x.transpose(1, 2).repeat(bsz, 1, 1, 1), 1, gather_indices)
for x in cos_sin
)
q, k = ((x * cos) + (rotate_half(x) * sin) for x in (q, k))
return q, k
def forward_flashattn_inference(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: bool = False,
use_cache: bool = False,
padding_mask: Optional[torch.Tensor] = None,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
if output_attentions:
warnings.warn(
"Output attentions is not supported for patched `LlamaAttention`, returning `None` instead."
)
bsz, q_len, _ = hidden_states.size()
kv_heads = getattr(self, "num_key_value_heads", self.num_heads)
q, k, v = (
op(hidden_states).view(bsz, q_len, nh, self.head_dim)
for op, nh in (
(self.q_proj, self.num_heads),
(self.k_proj, kv_heads),
(self.v_proj, kv_heads),
)
)
# shape: (b, s, num_heads, head_dim)
kv_seq_len = k.shape[1]
past_kv_len = 0
if past_key_value is not None:
past_kv_len = past_key_value[0].shape[2]
kv_seq_len += past_kv_len
cos_sin = self.rotary_emb(v, seq_len=kv_seq_len)
q, k = apply_rotary_pos_emb_inference(q, k, cos_sin, position_ids)
if past_key_value is not None:
assert (
flash_attn_version >= "2.1.0"
), "past_key_value support requires flash-attn >= 2.1.0"
# reuse k, v
k = torch.cat([past_key_value[0].transpose(1, 2), k], dim=1)
v = torch.cat([past_key_value[1].transpose(1, 2), v], dim=1)
past_key_value = (k.transpose(1, 2), v.transpose(1, 2)) if use_cache else None
if attention_mask is None:
output = flash_attn_func(q, k, v, 0.0, softmax_scale=None, causal=True).view(
bsz, q_len, -1
)
else:
q, indices, cu_q_lens, max_s = unpad_input(q, attention_mask[:, -q_len:])
# We can skip concat and call unpad twice but seems better to call unpad only once.
kv, _, cu_k_lens, max_k = unpad_input(
torch.stack((k, v), dim=2), attention_mask
)
output_unpad = flash_attn_varlen_kvpacked_func(
q,
kv,
cu_q_lens,
cu_k_lens,
max_s,
max_k,
0.0,
softmax_scale=None,
causal=True,
)
output_unpad = output_unpad.reshape(-1, self.num_heads * self.head_dim)
output = pad_input(output_unpad, indices, bsz, q_len)
return self.o_proj(output), None, past_key_value
def _prepare_decoder_attention_mask_inference(
self, attention_mask, input_shape, inputs_embeds, past_key_values_length
):
# [bsz, seq_len]
if past_key_values_length > 0 and attention_mask is not None:
attention_mask = torch.cat(
(
torch.full(
(input_shape[0], past_key_values_length),
True,
dtype=attention_mask.dtype,
device=attention_mask.device,
),
attention_mask,
),
dim=-1,
)
if attention_mask is not None and torch.all(attention_mask):
return None # This uses the faster call when training with full samples
return attention_mask
def replace_llama_attn(use_flash_attn=True, use_full=False, inference=False):
if use_flash_attn:
cuda_major, cuda_minor = torch.cuda.get_device_capability()
if cuda_major < 8:
warnings.warn(
"Flash attention is only supported on A100 or H100 GPU during training due to head dim > 64 backward."
"ref: https://github.com/HazyResearch/flash-attention/issues/190#issuecomment-1523359593"
)
if inference:
transformers.models.llama.modeling_llama.LlamaModel._prepare_decoder_attention_mask = _prepare_decoder_attention_mask_inference
transformers.models.llama.modeling_llama.LlamaAttention.forward = forward_flashattn_inference
else:
transformers.models.llama.modeling_llama.LlamaModel._prepare_decoder_attention_mask = (
_prepare_decoder_attention_mask
)
transformers.models.llama.modeling_llama.LlamaAttention.forward = forward_flashattn_full if use_full else forward_flashattn
else:
transformers.models.llama.modeling_llama.LlamaAttention.forward = forward_noflashattn