Skip to content

Commit 4043d2e

Browse files
authored
Update GraphSAGE.py
1 parent dbbcaff commit 4043d2e

File tree

1 file changed

+0
-74
lines changed

1 file changed

+0
-74
lines changed

GraphSAGE/GraphSAGE.py

-74
Original file line numberDiff line numberDiff line change
@@ -205,79 +205,5 @@ def run_cora():
205205
print ("Validation F1:", f1_score(labels[val], val_output.data.numpy().argmax(axis=1), average="micro"))
206206
print ("Average batch time:", np.mean(times))
207207

208-
# =============================================================================
209-
# def load_pubmed():
210-
# #hardcoded for simplicity...
211-
# num_nodes = 19717
212-
# num_feats = 500
213-
# feat_data = np.zeros((num_nodes, num_feats))
214-
# labels = np.empty((num_nodes, 1), dtype=np.int64)
215-
# node_map = {}
216-
# with open("pubmed-data/Pubmed-Diabetes.NODE.paper.tab") as fp:
217-
# fp.readline()
218-
# feat_map = {entry.split(":")[1]:i-1 for i,entry in enumerate(fp.readline().split("\t"))}
219-
# for i, line in enumerate(fp):
220-
# info = line.split("\t")
221-
# node_map[info[0]] = i
222-
# labels[i] = int(info[1].split("=")[1])-1
223-
# for word_info in info[2:-1]:
224-
# word_info = word_info.split("=")
225-
# feat_data[i][feat_map[word_info[0]]] = float(word_info[1])
226-
# adj_lists = defaultdict(set)
227-
# with open("pubmed-data/Pubmed-Diabetes.DIRECTED.cites.tab") as fp:
228-
# fp.readline()
229-
# fp.readline()
230-
# for line in fp:
231-
# info = line.strip().split("\t")
232-
# paper1 = node_map[info[1].split(":")[1]]
233-
# paper2 = node_map[info[-1].split(":")[1]]
234-
# adj_lists[paper1].add(paper2)
235-
# adj_lists[paper2].add(paper1)
236-
# return feat_data, labels, adj_lists
237-
#
238-
# def run_pubmed():
239-
# np.random.seed(1)
240-
# random.seed(1)
241-
# num_nodes = 19717
242-
# feat_data, labels, adj_lists = load_pubmed()
243-
# features = nn.Embedding(19717, 500)
244-
# features.weight = nn.Parameter(torch.FloatTensor(feat_data), requires_grad=False)
245-
# # features.cuda()
246-
#
247-
# agg1 = MeanAggregator(features, cuda=True)
248-
# enc1 = Encoder(features, 500, 128, adj_lists, agg1, gcn=True, cuda=False)
249-
# agg2 = MeanAggregator(lambda nodes : enc1(nodes).t(), cuda=False)
250-
# enc2 = Encoder(lambda nodes : enc1(nodes).t(), enc1.embed_dim, 128, adj_lists, agg2,
251-
# base_model=enc1, gcn=True, cuda=False)
252-
# enc1.num_samples = 10
253-
# enc2.num_samples = 25
254-
#
255-
# graphsage = SupervisedGraphSage(3, enc2)
256-
# # graphsage.cuda()
257-
# rand_indices = np.random.permutation(num_nodes)
258-
# test = rand_indices[:1000]
259-
# val = rand_indices[1000:1500]
260-
# train = list(rand_indices[1500:])
261-
#
262-
# optimizer = torch.optim.SGD(filter(lambda p : p.requires_grad, graphsage.parameters()), lr=0.7)
263-
# times = []
264-
# for batch in range(200):
265-
# batch_nodes = train[:1024]
266-
# random.shuffle(train)
267-
# start_time = time.time()
268-
# optimizer.zero_grad()
269-
# loss = graphsage.loss(batch_nodes,
270-
# Variable(torch.LongTensor(labels[np.array(batch_nodes)])))
271-
# loss.backward()
272-
# optimizer.step()
273-
# end_time = time.time()
274-
# times.append(end_time-start_time)
275-
# print (batch, loss.data[0])
276-
#
277-
# val_output = graphsage.forward(val)
278-
# print ("Validation F1:", f1_score(labels[val], val_output.data.numpy().argmax(axis=1), average="micro"))
279-
# print ("Average batch time:", np.mean(times))
280-
# =============================================================================
281-
282208
if __name__ == "__main__":
283209
run_cora()

0 commit comments

Comments
 (0)