forked from StochLab/SlopedTerrainLinearPolicy
-
Notifications
You must be signed in to change notification settings - Fork 0
/
trainLaikago_policy.py
454 lines (391 loc) · 18 KB
/
trainLaikago_policy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
import sys, os
import inspect
# Importing the libraries
import os
import numpy as np
import gym
import gym_sloped_terrain.envs.Laikago_pybullet_env as e
from gym import wrappers
import time
import multiprocessing as mp
from multiprocessing import Process, Pipe
import argparse
import math
# Utils
from utils.logger import DataLog
from utils.make_train_plots import make_train_plots_ars
import random
# Registering new environments
from gym.envs.registration import registry, register, make, spec
# Stoch 2 Test imports
import pybullet as p
import numpy as np
PI = math.pi
# Setting the Hyper Parameters
import math
PI = math.pi
class HyperParameters():
"""
This class is basically a struct that contains all the hyperparameters that you want to tune
"""
def __init__(self, stairs=False, action_dim=10, normal=True, gait='trot', msg='', nb_steps=10000,
episode_length=1000, learning_rate=0.02, nb_directions=16, nb_best_directions=8, noise=0.03, seed=1,
env_name='HalfCheetahBulletEnv-v0', curilearn=60, evalstep=3):
self.nb_steps = nb_steps
self.episode_length = episode_length
self.learning_rate = learning_rate
self.nb_directions = nb_directions
self.nb_best_directions = nb_best_directions
assert self.nb_best_directions <= self.nb_directions
self.noise = noise
self.seed = seed
self.env_name = env_name
self.normal = normal
self.msg = msg
self.gait = gait
self.action_dim = action_dim
self.stairs = stairs
self.curilearn = curilearn
self.evalstep = evalstep
self.domain_Rand = 1
self.logdir = ""
self.anti_clock_ori = True
def to_text(self, path):
res_str = ''
res_str = res_str + 'learning_rate: ' + str(self.learning_rate) + '\n'
res_str = res_str + 'noise: ' + str(self.noise) + '\n'
if (self.stairs):
res_str = res_str + 'env_name: ' + str(self.env_name) + 'with stairs \n'
else:
res_str = res_str + 'env_name: ' + str(self.env_name) + '\n'
res_str = res_str + 'episode_length: ' + str(self.episode_length) + '\n'
res_str = res_str + 'direction ratio: ' + str(self.nb_directions / self.nb_best_directions) + '\n'
res_str = res_str + 'Normal initialization: ' + str(self.normal) + '\n'
res_str = res_str + 'Gait: ' + str(self.gait) + '\n'
res_str = res_str + 'Incline_Orientaion_Anti-Clockwise: ' + str(self.anti_clock_ori) + '\n'
res_str = res_str + 'domain_Randomization: ' + str(self.domain_Rand) + '\n'
res_str = res_str + 'Curriculmn introduced at iteration: ' + str(self.curilearn) + '\n'
res_str = res_str + self.msg + '\n'
fileobj = open(path, 'w')
fileobj.write(res_str)
fileobj.close()
# Multiprocess Exploring the policy on one specific direction and over one episode
_RESET = 1
_CLOSE = 2
_EXPLORE = 3
def ExploreWorker(rank, childPipe, envname, args):
env = gym.make(envname)
nb_inputs = env.observation_space.sample().shape[0]
observation_n = env.reset()
n = 0
while True:
n += 1
try:
# Only block for short times to have keyboard exceptions be raised.
if not childPipe.poll(0.001):
continue
message, payload = childPipe.recv()
except (EOFError, KeyboardInterrupt):
break
if message == _RESET:
observation_n = env.reset()
childPipe.send(["reset ok"])
continue
if message == _EXPLORE:
policy = payload[0]
hp = payload[1]
direction = payload[2]
delta = payload[3]
state = env.reset()
done = False
num_plays = 0.
sum_rewards = 0
while num_plays < hp.episode_length:
action = policy.evaluate(state, delta, direction, hp)
state, reward, done, _ = env.step(action)
sum_rewards += reward
num_plays += 1
childPipe.send([sum_rewards, num_plays])
continue
if message == _CLOSE:
childPipe.send(["close ok"])
break
childPipe.close()
# Building the AI
class Policy():
def __init__(self, input_size, output_size, env_name, normal, args):
try:
print("Training from guided policy,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,")
self.theta = np.load(args.policy)
except:
print("Training from random policy")
if (normal):
print("Training from random policy")
self.theta = np.random.randn(output_size, input_size)
else:
self.theta = np.zeros((output_size, input_size))
self.env_name = env_name
print("Starting policy theta=", self.theta)
def evaluate(self, input, delta, direction, hp):
if direction is None:
return np.clip(self.theta.dot(input), -1.0, 1.0)
elif direction == "positive":
return np.clip((self.theta + hp.noise * delta).dot(input), -1.0, 1.0)
else:
return np.clip((self.theta - hp.noise * delta).dot(input), -1.0, 1.0)
def sample_deltas(self):
return [np.random.randn(*self.theta.shape) for _ in range(hp.nb_directions)]
def update(self, rollouts, sigma_r, args):
step = np.zeros(self.theta.shape)
for r_pos, r_neg, direction in rollouts:
step += (r_pos - r_neg) * direction
self.theta += hp.learning_rate / (hp.nb_best_directions * sigma_r) * step
timestr = time.strftime("%Y%m%d-%H%M%S")
# Exploring the policy on one specific direction and over one episode
def explore(env, policy, direction, delta, hp):
nb_inputs = env.observation_space.sample().shape[0]
state = env.reset()
done = False
num_plays = 0.
sum_rewards = 0
while num_plays < hp.episode_length:
action = policy.evaluate(state, delta, direction, hp)
state, reward, done, _ = env.step(action)
sum_rewards += reward
num_plays += 1
return sum_rewards
def policyevaluation(env, policy, hp):
reward_evaluation = 0
if hp.domain_Rand:
# Evaluation Dataset with domain randomization
# --------------------------------------------------------------
incline_deg_range = [3, 4] # 9, 11
incline_ori_range = [0, 2, 3] # 0, 60, 90 degree
fric = [0, 1] # surface friction 0.55, 0.6
mf = [0] # extra mass at front 0gm
mb = [3] # extra mass at back 150gm
ms = [0, 1] # motorstrength 0.52, 0.6
ef = [0] # pertubation force 0
# --------------------------------------------------------------
total_combinations = len(incline_deg_range) * len(incline_ori_range) * \
len(fric) * len(mf) * len(mb) * len(ms) * len(ef)
for j in incline_deg_range:
for i in incline_ori_range:
for k in fric:
for f in mf:
for b in mb:
for s in ms:
for p in ef:
env.Set_Randomization(default=True, idx1=j, idx2=i, idx3=k, idx0=f, idx11=b, idxc=s,
idxp=p)
reward_evaluation = reward_evaluation + explore(env, policy, None, None, hp)
reward_evaluation = reward_evaluation / total_combinations
else:
# Evaluation Dataset without domain randomization
# --------------------------------------------------------------
incline_deg_range = [2, 3] # 11, 13
incline_ori_range = [0, 2, 3] # 0, 30, 45 degree
# --------------------------------------------------------------
total_combinations = len(incline_deg_range) * len(incline_ori_range)
for j in incline_deg_range:
for i in incline_ori_range:
env.randomize_only_inclines(default=True, idx1=j, idx2=i)
reward_evaluation = reward_evaluation + explore(env, policy, None, None, hp)
reward_evaluation = reward_evaluation / total_combinations
return reward_evaluation
# Training the AI
def train(env, policy, hp, parentPipes, args):
args.logdir = "experiments/" + args.logdir
logger = DataLog()
total_steps = 0
best_return = -99999999
working_dir = os.getcwd()
if os.path.isdir(args.logdir) == False:
os.mkdir(args.logdir)
previous_dir = os.getcwd()
os.chdir(args.logdir)
if os.path.isdir('iterations') == False: os.mkdir('iterations')
if os.path.isdir('logs') == False: os.mkdir('logs')
hp.to_text('hyperparameters')
log_dir = os.getcwd()
os.chdir(working_dir)
for step in range(hp.nb_steps):
if hp.domain_Rand:
env.Set_Randomization(default=False)
else:
env.randomize_only_inclines()
# Cirriculum learning
if (step > hp.curilearn):
avail_deg = [7, 9, 11, 13]
env.incline_deg = avail_deg[random.randint(0, 3)]
else:
avail_deg = [7, 9]
env.incline_deg = avail_deg[random.randint(0, 1)]
# Initializing the perturbations deltas and the positive/negative rewards
deltas = policy.sample_deltas()
positive_rewards = [0] * hp.nb_directions
negative_rewards = [0] * hp.nb_directions
if (parentPipes):
process_count = len(parentPipes)
if parentPipes:
p = 0
while (p < hp.nb_directions):
temp_p = p
n_left = hp.nb_directions - p # Number of processes required to complete the search
for k in range(min([process_count, n_left])):
parentPipe = parentPipes[k]
parentPipe.send([_EXPLORE, [policy, hp, "positive", deltas[temp_p]]])
temp_p = temp_p + 1
temp_p = p
for k in range(min([process_count, n_left])):
positive_rewards[temp_p], step_count = parentPipes[k].recv()
total_steps = total_steps + step_count
temp_p = temp_p + 1
temp_p = p
for k in range(min([process_count, n_left])):
parentPipe = parentPipes[k]
parentPipe.send([_EXPLORE, [policy, hp, "negative", deltas[temp_p]]])
temp_p = temp_p + 1
temp_p = p
for k in range(min([process_count, n_left])):
negative_rewards[temp_p], step_count = parentPipes[k].recv()
total_steps = total_steps + step_count
temp_p = temp_p + 1
p = p + process_count
print('total steps till now: ', total_steps, 'Processes done: ', p)
else:
# Getting the positive rewards in the positive directions
for k in range(hp.nb_directions):
positive_rewards[k] = explore(env, policy, "positive", deltas[k], hp)
# Getting the negative rewards in the negative/opposite directions
for k in range(hp.nb_directions):
negative_rewards[k] = explore(env, policy, "negative", deltas[k], hp)
# Sorting the rollouts by the max(r_pos, r_neg) and selecting the best directions
scores = {
k: max(r_pos, r_neg)
for k, (r_pos, r_neg) in enumerate(zip(positive_rewards, negative_rewards))
}
order = sorted(scores.keys(), key=lambda x: -scores[x])[:int(hp.nb_best_directions)]
rollouts = [(positive_rewards[k], negative_rewards[k], deltas[k]) for k in order]
# Gathering all the positive/negative rewards to compute the standard deviation of these rewards
all_rewards = np.array([x[0] for x in rollouts] + [x[1] for x in rollouts])
sigma_r = all_rewards.std() # Standard deviation of only rewards in the best directions is what it should be
# Updating our policy
policy.update(rollouts, sigma_r, args)
# Start evaluating after only second stage
if step >= hp.curilearn:
# policy evaluation after specified iterations
if step % hp.evalstep == 0:
reward_evaluation = policyevaluation(env, policy, hp)
logger.log_kv('steps', step)
logger.log_kv('return', reward_evaluation)
if (reward_evaluation > best_return):
best_policy = policy.theta
best_return = reward_evaluation
np.save(log_dir + "/iterations/best_policy.npy", best_policy)
print('Step:', step, 'Reward:', reward_evaluation)
policy_path = log_dir + "/iterations/" + "policy_" + str(step)
np.save(policy_path, policy.theta)
logger.save_log(log_dir + "/logs/")
make_train_plots_ars(log=logger.log, keys=['steps', 'return'], save_loc=log_dir + "/logs/")
# Running the main code
def mkdir(base, name):
path = os.path.join(base, name)
if not os.path.exists(path):
os.makedirs(path)
return path
if __name__ == "__main__":
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--env', help='Gym environment name', type=str, default='Laikago-v0')
parser.add_argument('--seed', help='RNG seed', type=int, default=1234123)
parser.add_argument('--render', help='OpenGL Visualizer', type=int, default=0)
parser.add_argument('--steps', help='Number of steps', type=int, default=10000)
parser.add_argument('--policy', help='Starting policy file (npy)', type=str, default='')
parser.add_argument('--logdir', help='Directory root to log policy files (npy)', type=str, default='logdir_name')
parser.add_argument('--mp', help='Enable multiprocessing', type=int, default=1)
# these you have to set
parser.add_argument('--lr', help='learning rate', type=float, default=0.2)
parser.add_argument('--noise', help='noise hyperparameter', type=float, default=0.03)
parser.add_argument('--episode_length', help='length of each episode', type=float, default=10)
parser.add_argument('--normal', help='length of each episode', type=int, default=1)
parser.add_argument('--gait', help='type of gait you want (Only in Stoch2 normal env', type=str, default='trot')
parser.add_argument('--msg', help='msg to save in a text file', type=str, default='')
parser.add_argument('--stairs', help='add stairs to the bezier environment', type=int, default=0)
parser.add_argument('--action_dim', help='degree of the spline polynomial used in the training', type=int,default=20)
parser.add_argument('--directions', help='divising factor of total directions to use', type=int, default=2)
parser.add_argument('--curi_learn', help='after how many iteration steps second stage of curriculum learning should start', type=int, default=10)
parser.add_argument('--eval_step', help='policy evaluation after how many steps should take place', type=int, default=3)
parser.add_argument('--domain_Rand', help='add domain randomization', type=int, default=1)
parser.add_argument('--anti_clock_ori', help='rotate the inclines anti-clockwise', type=bool, default=True)
args = parser.parse_args()
walk = [0, PI, PI / 2, 3 * PI / 2]
canter = [0, PI, 0, PI]
bound = [0, 0, PI, PI]
trot = [0, PI, PI, 0]
custom_phase = [0, PI, PI + 0.1, 0.1]
phase = 0
if (args.gait == "trot"):
phase = trot
elif (args.gait == "canter"):
phase = canter
elif (args.gait == "bound"):
phase = bound
elif (args.gait == "walk"):
phase = walk
elif (args.gait == "custom_phase1"):
phase = custom_phase
# Custom environments that you want to use ----------------------------------------------------------------------------------------
register(id=args.env,
entry_point='gym_sloped_terrain.envs.Laikago_pybullet_env:LaikagoEnv',
kwargs={'gait': args.gait, 'render': False, 'action_dim': args.action_dim})
# ---------------------------------------------------------------------------------------------------------------------------------
hp = HyperParameters()
args.policy = './initial_policies/' + args.policy
hp.msg = args.msg
hp.env_name = args.env
print("\n\n", hp.env_name, "\n\n")
env = gym.make(hp.env_name)
hp.seed = args.seed
hp.nb_steps = args.steps
hp.learning_rate = args.lr
hp.noise = args.noise
hp.episode_length = args.episode_length
hp.nb_directions = int(env.observation_space.sample().shape[0] * env.action_space.sample().shape[0])
hp.nb_best_directions = int(hp.nb_directions / args.directions)
hp.normal = args.normal
hp.gait = args.gait
hp.action_dim = args.action_dim
hp.stairs = args.stairs
hp.curilearn = args.curi_learn
hp.evalstep = args.eval_step
hp.domain_Rand = args.domain_Rand
hp.anti_clock_ori = args.anti_clock_ori
print("log dir", args.logdir)
hp.logdir = args.logdir
np.random.seed(hp.seed)
max_processes = 20
parentPipes = None
if args.mp:
num_processes = min([hp.nb_directions, max_processes])
print('processes: ', num_processes)
processes = []
childPipes = []
parentPipes = []
for pr in range(num_processes):
parentPipe, childPipe = Pipe()
parentPipes.append(parentPipe)
childPipes.append(childPipe)
for rank in range(num_processes):
p = mp.Process(target=ExploreWorker, args=(rank, childPipes[rank], hp.env_name, args))
p.start()
processes.append(p)
nb_inputs = env.observation_space.sample().shape[0]
nb_outputs = env.action_space.sample().shape[0]
policy = Policy(nb_inputs, nb_outputs, hp.env_name, hp.normal, args)
print("start training")
train(env, policy, hp, parentPipes, args)
if args.mp:
for parentPipe in parentPipes:
parentPipe.send([_CLOSE, "pay2"])
for p in processes:
p.join()