Skip to content

Commit b989c1d

Browse files
committed
Add Labeling Guideline && Update app.py + README.md for Deployment
1 parent 9880d51 commit b989c1d

File tree

4 files changed

+6
-9
lines changed

4 files changed

+6
-9
lines changed

.gitignore

-5
Original file line numberDiff line numberDiff line change
@@ -1,7 +1,2 @@
11
*.zip
22
*.hdf5
3-
!Model\ Implement/ResNet152V2/fine_tune_model_best.hdf5
4-
test.py
5-
secret.ini
6-
Dataset
7-
credentials.json

Labeling Guideline.pdf

3.33 MB
Binary file not shown.

README.md

+5-3
Original file line numberDiff line numberDiff line change
@@ -1,14 +1,16 @@
11
# A Dataset for Vietnamese Food Images Recognition
22

3-
- Dataset: https://www.kaggle.com/quandang/vietnamese-foods
4-
- Demo: https://www.youtube.com/watch?v=GV_1TGohFU8
3+
- Dataset: https://www.kaggle.com/quandang/vietnamese-foods
4+
- Demo: https://www.youtube.com/watch?v=GV_1TGohFU8
55

66
## Publication
7+
78
> Paper: https://ieeexplore.ieee.org/abstract/document/9530774
89
910
This paper introduces a large dataset of **25136 images of 30 popular Vietnamese foods**. Several machine learning and deep learning image classification techniques have been applied to test the dataset and the results were compared and report. A **decent accuracy of 77.54%** and a high **top 5-accuracy of 96.07%** were achieved. The dataset and the performance comparison of state-of-the-art algorithm tested on the dataset will be useful for ones to develop new food image classification algorithms.
1011

1112
## Implementation process
13+
1214
1. Collecting Data: https://git.io/Jthak
1315
2. Preprocessing Data:
1416

@@ -20,7 +22,7 @@ This paper introduces a large dataset of **25136 images of 30 popular Vietnamese
2022

2123
3. Model Implement: https://git.io/Jc1Bi
2224
4. Model Evaluation: https://git.io/Jc7fL
23-
5. Deployment: https://share.streamlit.io/18520339/30VNFoods/main/app.py
25+
5. Deployment: **temporarily inactive** due to the large model exceeded my Git LFS quota. You can watch the [demo](https://www.youtube.com/watch?v=GV_1TGohFU8) or try to make [your own deployment](https://github.com/18520339/30VNFoods/blob/main/app.py) with [our trained models](https://drive.google.com/drive/folders/1HQQaB3Tqc6m1XGxkqD5blQOO6vfdGONO?usp=sharing) using [Streamlit](https://docs.streamlit.io/en/stable/deploy_streamlit_app.html#deploy-your-app)
2426

2527
## License
2628

app.py

+1-1
Original file line numberDiff line numberDiff line change
@@ -99,7 +99,7 @@ def plot_probs(outputs):
9999
)
100100

101101
img_test = preprocess_image('./test.jpg')
102-
model = load_model('Model Implement/ResNet152V2/fine_tune_model_best.hdf5')
102+
model = load_model('[PLACE_YOUR_MODEL_PATH_HERE]')
103103
pred_probs = model.predict(img_test)[0]
104104
print(pred_probs)
105105

0 commit comments

Comments
 (0)