-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathwgs2utm.m
155 lines (145 loc) · 5.5 KB
/
wgs2utm.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
function [x,y,utmzone,utmhemi] = wgs2utm(Lat,Lon,utmzone,utmhemi)
% -------------------------------------------------------------------------
% [x,y,utmzone] = wgs2utm(Lat,Lon,Zone)
%
% Description:
% Convert WGS84 coordinates (Latitude, Longitude) into UTM coordinates
% (northing, easting) according to (optional) input UTM zone and
% hemisphere.
%
% Input:
% Lat: WGS84 Latitude scalar, vector or array in decimal degrees.
% Lon: WGS84 Longitude scalar, vector or array in decimal degrees.
% utmzone (optional): UTM longitudinal zone. Scalar or same size as Lat
% and Lon.
% utmhemi (optional): UTM hemisphere as a single character, 'N' or 'S',
% or array of 'N' or 'S' characters of same size as Lat and Lon.
%
% Output:
% x: UTM easting in meters.
% y: UTM northing in meters.
% utmzone: UTM longitudinal zone.
% utmhemi: UTM hemisphere as array of 'N' or 'S' characters.
%
% Author notes:
% I downloaded and tried deg2utm.m from Rafael Palacios but found
% differences of up to 1m with my reference converters in southern
% hemisphere so I wrote my own code based on "Map Projections - A
% Working Manual" by J.P. Snyder (1987). Quick quality control performed
% only by comparing with LINZ converter
% (www.linz.govt.nz/apps/coordinateconversions/) and Chuck Taylor's
% (http://home.hiwaay.net/~taylorc/toolbox/geography/geoutm.html) on a
% few test points, so use results with caution. Equations not suitable
% for a latitude of +/- 90deg.
%
% UPDATE: Following requests, this new version allows forcing UTM zone
% in input.
%
% Examples:
%
% % set random latitude and longitude arrays
% Lat= 90.*(2.*rand(3)-1)
% Lon= 180.*(2.*rand(3)-1)
%
% % let the function find appropriate UTM zone and hemisphere from data
% [x1,y1,utmzone1,utmhemi1] = wgs2utm(Lat,Lon)
%
% % forcing unique UTM zone and hemisphere for all data entries
% % note: resulting easting and northing are way off the usual values
% [x2,y2,utmzone2,utmhemi2] = wgs2utm(Lat,Lon,60,'S')
%
% % forcing different UTM zone and hemisphere for each data entry
% % note: resulting easting and northing are way off the usual values
% utmzone = floor(59.*rand(3))+1
% utmhemi = char(78 + 5.*round(rand(3)))
% [x3,y3,utmzone3,utmhemi3] = wgs2utm(Lat,Lon,utmzone,utmhemi)
%
% Author:
% Alexandre Schimel
% MetOcean Solutions Ltd
% New Plymouth, New Zealand
%
% Version 2:
% February 2011
%-------------------------------------------------------------------------
%% Argument checking
if ~sum(double(nargin==[2,4]))
error('Wrong number of input arguments');return
end
n1=size(Lat);
n2=size(Lon);
if (n1~=n2)
error('Lat and Lon should have same size');return
end
if exist('utmzone','var') && exist('utmhemi','var')
n3=size(utmzone);
n4=size(utmhemi);
if (sort(n3)~=sort(n4))
error('utmzone and utmhemi should have same size');return
end
if max(n3)~=1 && max(n3)~=max(n1)
error('utmzone should have either same size as Lat and Long, or size=1');return
end
end
% expand utmzone and utmhemi if needed
if exist('utmzone','var') && exist('utmhemi','var')
n3=size(utmzone);
n4=size(utmhemi);
if n3==[1 1]
utmzone = utmzone.*ones(size(Lat));
utmhemi = char(utmhemi.*ones(size(Lat)));
end
end
%% coordinates in radians
lat = Lat.*pi./180;
lon = Lon.*pi./180;
%% WGS84 parameters
a = 6378137; %semi-major axis
b = 6356752.314245; %semi-minor axis
% b = 6356752.314140; %GRS80 value, originally used for WGS84 before refinements
e = sqrt(1-(b./a).^2); % eccentricity
%% UTM parameters
% lat0 = 0; % reference latitude, not used here
if exist('utmzone','var')
Lon0 = 6.*utmzone-183; % reference longitude in degrees
else
Lon0 = floor(Lon./6).*6+3; % reference longitude in degrees
end
lon0 = Lon0.*pi./180; % in radians
k0 = 0.9996; % scale on central meridian
FE = 500000; % false easting
if exist('utmhemi','var')
FN = double(utmhemi=='S').*10000000;
else
FN = (Lat < 0).*10000000; % false northing
end
%% Equations parameters
eps = e.^2./(1-e.^2); % e prime square
% N: radius of curvature of the earth perpendicular to meridian plane
% Also, distance from point to polar axis
N = a./sqrt(1-e.^2.*sin(lat).^2);
T = tan(lat).^2;
C = ((e.^2)./(1-e.^2)).*(cos(lat)).^2;
A = (lon-lon0).*cos(lat);
% M: true distance along the central meridian from the equator to lat
M = a.*( ( 1 - e.^2./4 - 3.*e.^4./64 - 5.*e.^6./256 ) .* lat ...
-( 3.*e.^2./8 + 3.*e.^4./32 + 45.*e.^6./1024 ) .* sin(2.*lat) ...
+( 15.*e.^4./256 + 45.*e.^6./1024 ) .* sin(4.*lat) ...
-(35.*e.^6./3072 ) .* sin(6.*lat) );
%% easting
x = FE + k0.*N.*( A ...
+ (1-T+C) .* A.^3./6 ...
+ (5-18.*T+T.^2+72.*C-58.*eps) .* A.^5./120 );
%% northing
% M(lat0) = 0 so not used in following formula
y = FN + k0.*M + k0.*N.*tan(lat).*( A.^2./2 ...
+ (5-T+9.*C+4.*C.^2) .* A.^4./24 ...
+ (61-58.*T+T.^2+600.*C-330.*eps) .* A.^6./720 );
%% UTM zone
if exist('utmzone','var') && exist('utmhemi','var')
utmzone = utmzone;
utmhemi = utmhemi;
else
utmzone = floor(Lon0./6)+31;
utmhemi = char( 83.* (Lat < 0) + 78.* (Lat >= 0) );
end