-
Notifications
You must be signed in to change notification settings - Fork 4.7k
/
Number.Grisu3.cs
1089 lines (963 loc) · 48.5 KB
/
Number.Grisu3.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Licensed to the .NET Foundation under one or more agreements.
// The .NET Foundation licenses this file to you under the MIT license.
using System.Diagnostics;
namespace System
{
internal static partial class Number
{
// This is a port of the `Grisu3` implementation here: https://github.com/google/double-conversion/blob/a711666ddd063eb1e4b181a6cb981d39a1fc8bac/double-conversion/fast-dtoa.cc
// The backing algorithm and the proofs behind it are described in more detail here: http://www.cs.tufts.edu/~nr/cs257/archive/florian-loitsch/printf.pdf
// ========================================================================================================================================
//
// Overview:
//
// The general idea behind Grisu3 is to leverage additional bits and cached powers of ten to generate the correct digits.
// The algorithm is imprecise for some numbers. Fortunately, the algorithm itself can determine this scenario and gives us
// a result indicating success or failure. We must fallback to a different algorithm for the failing scenario.
internal static class Grisu3
{
private const int CachedPowersDecimalExponentDistance = 8;
private const int CachedPowersMinDecimalExponent = -348;
private const int CachedPowersPowerMaxDecimalExponent = 340;
private const int CachedPowersOffset = -CachedPowersMinDecimalExponent;
// 1 / Log2(10)
private const double D1Log210 = 0.301029995663981195;
// The minimal and maximal target exponents define the range of w's binary exponent,
// where w is the result of multiplying the input by a cached power of ten.
//
// A different range might be chosen on a different platform, to optimize digit generation,
// but a smaller range requires more powers of ten to be cached.
private const int MaximalTargetExponent = -32;
private const int MinimalTargetExponent = -60;
private static ReadOnlySpan<short> CachedPowersBinaryExponent => new short[]
{
-1220,
-1193,
-1166,
-1140,
-1113,
-1087,
-1060,
-1034,
-1007,
-980,
-954,
-927,
-901,
-874,
-847,
-821,
-794,
-768,
-741,
-715,
-688,
-661,
-635,
-608,
-582,
-555,
-529,
-502,
-475,
-449,
-422,
-396,
-369,
-343,
-316,
-289,
-263,
-236,
-210,
-183,
-157,
-130,
-103,
-77,
-50,
-24,
3,
30,
56,
83,
109,
136,
162,
189,
216,
242,
269,
295,
322,
348,
375,
402,
428,
455,
481,
508,
534,
561,
588,
614,
641,
667,
694,
720,
747,
774,
800,
827,
853,
880,
907,
933,
960,
986,
1013,
1039,
1066,
};
private static ReadOnlySpan<short> CachedPowersDecimalExponent => new short[]
{
CachedPowersMinDecimalExponent,
-340,
-332,
-324,
-316,
-308,
-300,
-292,
-284,
-276,
-268,
-260,
-252,
-244,
-236,
-228,
-220,
-212,
-204,
-196,
-188,
-180,
-172,
-164,
-156,
-148,
-140,
-132,
-124,
-116,
-108,
-100,
-92,
-84,
-76,
-68,
-60,
-52,
-44,
-36,
-28,
-20,
-12,
-4,
4,
12,
20,
28,
36,
44,
52,
60,
68,
76,
84,
92,
100,
108,
116,
124,
132,
140,
148,
156,
164,
172,
180,
188,
196,
204,
212,
220,
228,
236,
244,
252,
260,
268,
276,
284,
292,
300,
308,
316,
324,
332,
CachedPowersPowerMaxDecimalExponent,
};
private static ReadOnlySpan<ulong> CachedPowersSignificand => new ulong[]
{
0xFA8FD5A0081C0288,
0xBAAEE17FA23EBF76,
0x8B16FB203055AC76,
0xCF42894A5DCE35EA,
0x9A6BB0AA55653B2D,
0xE61ACF033D1A45DF,
0xAB70FE17C79AC6CA,
0xFF77B1FCBEBCDC4F,
0xBE5691EF416BD60C,
0x8DD01FAD907FFC3C,
0xD3515C2831559A83,
0x9D71AC8FADA6C9B5,
0xEA9C227723EE8BCB,
0xAECC49914078536D,
0x823C12795DB6CE57,
0xC21094364DFB5637,
0x9096EA6F3848984F,
0xD77485CB25823AC7,
0xA086CFCD97BF97F4,
0xEF340A98172AACE5,
0xB23867FB2A35B28E,
0x84C8D4DFD2C63F3B,
0xC5DD44271AD3CDBA,
0x936B9FCEBB25C996,
0xDBAC6C247D62A584,
0xA3AB66580D5FDAF6,
0xF3E2F893DEC3F126,
0xB5B5ADA8AAFF80B8,
0x87625F056C7C4A8B,
0xC9BCFF6034C13053,
0x964E858C91BA2655,
0xDFF9772470297EBD,
0xA6DFBD9FB8E5B88F,
0xF8A95FCF88747D94,
0xB94470938FA89BCF,
0x8A08F0F8BF0F156B,
0xCDB02555653131B6,
0x993FE2C6D07B7FAC,
0xE45C10C42A2B3B06,
0xAA242499697392D3,
0xFD87B5F28300CA0E,
0xBCE5086492111AEB,
0x8CBCCC096F5088CC,
0xD1B71758E219652C,
0x9C40000000000000,
0xE8D4A51000000000,
0xAD78EBC5AC620000,
0x813F3978F8940984,
0xC097CE7BC90715B3,
0x8F7E32CE7BEA5C70,
0xD5D238A4ABE98068,
0x9F4F2726179A2245,
0xED63A231D4C4FB27,
0xB0DE65388CC8ADA8,
0x83C7088E1AAB65DB,
0xC45D1DF942711D9A,
0x924D692CA61BE758,
0xDA01EE641A708DEA,
0xA26DA3999AEF774A,
0xF209787BB47D6B85,
0xB454E4A179DD1877,
0x865B86925B9BC5C2,
0xC83553C5C8965D3D,
0x952AB45CFA97A0B3,
0xDE469FBD99A05FE3,
0xA59BC234DB398C25,
0xF6C69A72A3989F5C,
0xB7DCBF5354E9BECE,
0x88FCF317F22241E2,
0xCC20CE9BD35C78A5,
0x98165AF37B2153DF,
0xE2A0B5DC971F303A,
0xA8D9D1535CE3B396,
0xFB9B7CD9A4A7443C,
0xBB764C4CA7A44410,
0x8BAB8EEFB6409C1A,
0xD01FEF10A657842C,
0x9B10A4E5E9913129,
0xE7109BFBA19C0C9D,
0xAC2820D9623BF429,
0x80444B5E7AA7CF85,
0xBF21E44003ACDD2D,
0x8E679C2F5E44FF8F,
0xD433179D9C8CB841,
0x9E19DB92B4E31BA9,
0xEB96BF6EBADF77D9,
0xAF87023B9BF0EE6B,
};
private static ReadOnlySpan<uint> SmallPowersOfTen => new uint[]
{
1, // 10^0
10, // 10^1
100, // 10^2
1000, // 10^3
10000, // 10^4
100000, // 10^5
1000000, // 10^6
10000000, // 10^7
100000000, // 10^8
1000000000, // 10^9
};
public static bool TryRunDouble(double value, int requestedDigits, ref NumberBuffer number)
{
double v = double.IsNegative(value) ? -value : value;
Debug.Assert(v > 0);
Debug.Assert(double.IsFinite(v));
int length;
int decimalExponent;
bool result;
if (requestedDigits == -1)
{
DiyFp w = DiyFp.CreateAndGetBoundaries(v, out DiyFp boundaryMinus, out DiyFp boundaryPlus).Normalize();
result = TryRunShortest(in boundaryMinus, in w, in boundaryPlus, number.Digits, out length, out decimalExponent);
}
else
{
DiyFp w = new DiyFp(v).Normalize();
result = TryRunCounted(in w, requestedDigits, number.Digits, out length, out decimalExponent);
}
if (result)
{
Debug.Assert((requestedDigits == -1) || (length == requestedDigits));
number.Scale = length + decimalExponent;
number.Digits[length] = (byte)('\0');
number.DigitsCount = length;
}
return result;
}
public static bool TryRunHalf(Half value, int requestedDigits, ref NumberBuffer number)
{
Half v = Half.IsNegative(value) ? Half.Negate(value) : value;
Debug.Assert((double)v > 0);
Debug.Assert(Half.IsFinite(v));
int length;
int decimalExponent;
bool result;
if (requestedDigits == -1)
{
DiyFp w = DiyFp.CreateAndGetBoundaries(v, out DiyFp boundaryMinus, out DiyFp boundaryPlus).Normalize();
result = TryRunShortest(in boundaryMinus, in w, in boundaryPlus, number.Digits, out length, out decimalExponent);
}
else
{
DiyFp w = new DiyFp(v).Normalize();
result = TryRunCounted(in w, requestedDigits, number.Digits, out length, out decimalExponent);
}
if (result)
{
Debug.Assert((requestedDigits == -1) || (length == requestedDigits));
number.Scale = length + decimalExponent;
number.Digits[length] = (byte)('\0');
number.DigitsCount = length;
}
return result;
}
public static bool TryRunSingle(float value, int requestedDigits, ref NumberBuffer number)
{
float v = float.IsNegative(value) ? -value : value;
Debug.Assert(v > 0);
Debug.Assert(float.IsFinite(v));
int length;
int decimalExponent;
bool result;
if (requestedDigits == -1)
{
DiyFp w = DiyFp.CreateAndGetBoundaries(v, out DiyFp boundaryMinus, out DiyFp boundaryPlus).Normalize();
result = TryRunShortest(in boundaryMinus, in w, in boundaryPlus, number.Digits, out length, out decimalExponent);
}
else
{
DiyFp w = new DiyFp(v).Normalize();
result = TryRunCounted(in w, requestedDigits, number.Digits, out length, out decimalExponent);
}
if (result)
{
Debug.Assert((requestedDigits == -1) || (length == requestedDigits));
number.Scale = length + decimalExponent;
number.Digits[length] = (byte)('\0');
number.DigitsCount = length;
}
return result;
}
// The counted version of Grisu3 only generates requestedDigits number of digits.
// This version does not generate the shortest representation, and with enough requested digits 0.1 will at some point print as 0.9999999...
// Grisu3 is too imprecise for real halfway cases (1.5 will not work) and therefore the rounding strategy for halfway cases is irrelevant.
private static bool TryRunCounted(in DiyFp w, int requestedDigits, Span<byte> buffer, out int length, out int decimalExponent)
{
Debug.Assert(requestedDigits > 0);
int tenMkMinimalBinaryExponent = MinimalTargetExponent - (w.e + DiyFp.SignificandSize);
int tenMkMaximalBinaryExponent = MaximalTargetExponent - (w.e + DiyFp.SignificandSize);
DiyFp tenMk = GetCachedPowerForBinaryExponentRange(tenMkMinimalBinaryExponent, tenMkMaximalBinaryExponent, out int mk);
Debug.Assert(MinimalTargetExponent <= (w.e + tenMk.e + DiyFp.SignificandSize));
Debug.Assert(MaximalTargetExponent >= (w.e + tenMk.e + DiyFp.SignificandSize));
// Note that tenMk is only an approximation of 10^-k.
// A DiyFp only contains a 64-bit significand and tenMk is thus only precise up to 64-bits.
// The DiyFp.Multiply procedure rounds its result and tenMk is approximated too.
// The variable scaledW (as well as scaledBoundaryMinus/Plus) are now off by a small amount.
//
// In fact, scaledW - (w * 10^k) < 1ulp (unit in last place) of scaledW.
// In other words, let f = scaledW.f and e = scaledW.e, then:
// (f - 1) * 2^e < (w * 10^k) < (f + 1) * 2^e
DiyFp scaledW = w.Multiply(in tenMk);
// We now have (double)(scaledW * 10^-mk).
//
// DigitGenCounted will generate the first requestedDigits of scaledW and return together with a kappa such that:
// scaledW ~= buffer * 10^kappa.
//
// It will not always be exactly the same since DigitGenCounted only produces a limited number of digits.
bool result = TryDigitGenCounted(in scaledW, requestedDigits, buffer, out length, out int kappa);
decimalExponent = -mk + kappa;
return result;
}
// Provides a decimal representation of v.
// Returns true if it succeeds; otherwise, the result cannot be trusted.
//
// There will be length digits inside the buffer (not null-terminated).
// If the function returns true then:
// v == (double)(buffer * 10^decimalExponent)
//
// The digits in the buffer are the shortest representation possible (no 0.09999999999999999 instead of 0.1).
// The shorter representation will even be chosen if the longer one would be closer to v.
//
// The last digit will be closest to the actual v.
// That is, even if several digits might correctly yield 'v' when read again, the closest will be computed.
private static bool TryRunShortest(in DiyFp boundaryMinus, in DiyFp w, in DiyFp boundaryPlus, Span<byte> buffer, out int length, out int decimalExponent)
{
// boundaryMinus and boundaryPlus are the boundaries between v and its closest floating-point neighbors.
// Any number strictly between boundaryMinus and boundaryPlus will round to v when converted to a double.
// Grisu3 will never output representations that lie exactly on a boundary.
Debug.Assert(boundaryPlus.e == w.e);
int tenMkMinimalBinaryExponent = MinimalTargetExponent - (w.e + DiyFp.SignificandSize);
int tenMkMaximalBinaryExponent = MaximalTargetExponent - (w.e + DiyFp.SignificandSize);
DiyFp tenMk = GetCachedPowerForBinaryExponentRange(tenMkMinimalBinaryExponent, tenMkMaximalBinaryExponent, out int mk);
Debug.Assert(MinimalTargetExponent <= (w.e + tenMk.e + DiyFp.SignificandSize));
Debug.Assert(MaximalTargetExponent >= (w.e + tenMk.e + DiyFp.SignificandSize));
// Note that tenMk is only an approximation of 10^-k.
// A DiyFp only contains a 64-bit significan and tenMk is thus only precise up to 64-bits.
// The DiyFp.Multiply procedure rounds its result and tenMk is approximated too.
// The variable scaledW (as well as scaledBoundaryMinus/Plus) are now off by a small amount.
//
// In fact, scaledW - (w * 10^k) < 1ulp (unit in last place) of scaledW.
// In other words, let f = scaledW.f and e = scaledW.e, then:
// (f - 1) * 2^e < (w * 10^k) < (f + 1) * 2^e
DiyFp scaledW = w.Multiply(in tenMk);
Debug.Assert(scaledW.e == (boundaryPlus.e + tenMk.e + DiyFp.SignificandSize));
// In theory, it would be possible to avoid some recomputations by computing the difference between w
// and boundaryMinus/Plus (a power of 2) and to compute scaledBoundaryMinus/Plus by subtracting/adding
// from scaledW. However, the code becomes much less readable and the speed enhancements are not terrific.
DiyFp scaledBoundaryMinus = boundaryMinus.Multiply(in tenMk);
DiyFp scaledBoundaryPlus = boundaryPlus.Multiply(in tenMk);
// DigitGen will generate the digits of scaledW. Therefore, we have:
// v == (double)(scaledW * 10^-mk)
//
// Set decimalExponent == -mk and pass it to DigitGen and if scaledW is not an integer than it will be updated.
// For instance, if scaledW == 1.23 then the buffer will be filled with "123" and the decimalExponent will be decreased by 2.
bool result = TryDigitGenShortest(in scaledBoundaryMinus, in scaledW, in scaledBoundaryPlus, buffer, out length, out int kappa);
decimalExponent = -mk + kappa;
return result;
}
// Returns the biggest power of ten that is less than or equal to the given number.
// We furthermore receive the maximum number of bits 'number' has.
//
// Returns power == 10^(exponent) such that
// power <= number < power * 10
// If numberBits == 0, then 0^(0-1) is returned.
// The number of bits must be <= 32.
//
// Preconditions:
// number < (1 << (numberBits + 1))
private static uint BiggestPowerTen(uint number, int numberBits, out int exponentPlusOne)
{
// Inspired by the method for finding an integer log base 10 from here:
// http://graphics.stanford.edu/~seander/bithacks.html#IntegerLog10
Debug.Assert(number < (1U << (numberBits + 1)));
// 1233/4096 is approximately 1/log2(10)
int exponentGuess = ((numberBits + 1) * 1233) >> 12;
Debug.Assert((uint)(exponentGuess) < SmallPowersOfTen.Length);
uint power = SmallPowersOfTen[exponentGuess];
// We don't have any guarantees that 2^numberBits <= number
if (number < power)
{
exponentGuess--;
power = SmallPowersOfTen[exponentGuess];
}
exponentPlusOne = exponentGuess + 1;
return power;
}
// Generates (at most) requestedDigits of input number w.
//
// w is a floating-point number (DiyFp), consisting of a significand and an exponent.
// Its exponent is bounded by MinimalTargetExponent and MaximalTargetExponent, hence:
// -60 <= w.e <= -32
//
// Returns false if it fails, in which case the generated digits in the buffer should not be used.
//
// Preconditions:
// w is correct up to 1 ulp (unit in last place). That is, its error must be strictly less than a unit of its last digit.
// MinimalTargetExponent <= w.e <= MaximalTargetExponent
//
// Postconditions:
// Returns false if the procedure fails; otherwise:
// * buffer is not null-terminated, but length contains the number of digits.
// * The representation in buffer is the most precise representation of requestedDigits digits.
// * buffer contains at most requestedDigits digits of w. If there are less than requestedDigits digits then some trailing '0's have been removed.
// * kappa is such that w = buffer * 10^kappa + eps with |eps| < 10^kappa / 2.
//
// This procedure takes into account the imprecision of its input numbers.
// If the precision is not enough to guarantee all the postconditions, then false is returned.
// This usually happens rarely, but the failure-rate increases with higher requestedDigits
private static bool TryDigitGenCounted(in DiyFp w, int requestedDigits, Span<byte> buffer, out int length, out int kappa)
{
Debug.Assert(MinimalTargetExponent <= w.e);
Debug.Assert(w.e <= MaximalTargetExponent);
Debug.Assert(MinimalTargetExponent >= -60);
Debug.Assert(MaximalTargetExponent <= -32);
// w is assumed to have an error less than 1 unit.
// Whenever w is scaled we also scale its error.
ulong wError = 1;
// We cut the input number into two parts: the integral digits and the fractional digits.
// We don't emit any decimal separator, but adapt kapp instead.
// For example: instead of writing "1.2", we put "12" into the buffer and increase kappa by 1.
var one = new DiyFp(1UL << -w.e, w.e);
// Division by one is a shift.
uint integrals = (uint)(w.f >> -one.e);
// Modulo by one is an and.
ulong fractionals = w.f & (one.f - 1);
// We deviate from the original algorithm here and do some early checks to determine if we can satisfy requestedDigits.
// If we determine that we can't, we exit early and avoid most of the heavy lifting that the algorithm otherwise does.
//
// When fractionals is zero, we can easily determine if integrals can satisfy requested digits:
// If requestedDigits >= 11, integrals is not able to exhaust the count by itself since 10^(11 -1) > uint.MaxValue >= integrals.
// If integrals < 10^(requestedDigits - 1), integrals cannot exhaust the count.
// Otherwise, integrals might be able to exhaust the count and we need to execute the rest of the code.
if ((fractionals == 0) && ((requestedDigits >= 11) || (integrals < SmallPowersOfTen[requestedDigits - 1])))
{
Debug.Assert(buffer[0] == '\0');
length = 0;
kappa = 0;
return false;
}
uint divisor = BiggestPowerTen(integrals, DiyFp.SignificandSize - (-one.e), out kappa);
length = 0;
// Loop invariant:
// buffer = w / 10^kappa (integer division)
// These invariants hold for the first iteration:
// kappa has been initialized with the divisor exponent + 1
// The divisor is the biggest power of ten that is smaller than integrals
while (kappa > 0)
{
uint digit;
(digit, integrals) = Math.DivRem(integrals, divisor);
Debug.Assert(digit <= 9);
buffer[length] = (byte)('0' + digit);
length++;
requestedDigits--;
kappa--;
// Note that kappa now equals the exponent of the
// divisor and that the invariant thus holds again.
if (requestedDigits == 0)
{
break;
}
divisor /= 10;
}
if (requestedDigits == 0)
{
ulong rest = ((ulong)(integrals) << -one.e) + fractionals;
return TryRoundWeedCounted(
buffer,
length,
rest,
tenKappa: ((ulong)(divisor)) << -one.e,
unit: wError,
ref kappa
);
}
// The integrals have been generated and we are at the point of the decimal separator.
// In the following loop, we simply multiply the remaining digits by 10 and divide by one.
// We just need to pay attention to multiply associated data (the unit), too.
// Note that the multiplication by 10 does not overflow because:
// w.e >= -60 and thus one.e >= -60
Debug.Assert(one.e >= MinimalTargetExponent);
Debug.Assert(fractionals < one.f);
Debug.Assert((ulong.MaxValue / 10) >= one.f);
while ((requestedDigits > 0) && (fractionals > wError))
{
fractionals *= 10;
wError *= 10;
// Integer division by one.
uint digit = (uint)(fractionals >> -one.e);
Debug.Assert(digit <= 9);
buffer[length] = (byte)('0' + digit);
length++;
requestedDigits--;
kappa--;
// Modulo by one.
fractionals &= (one.f - 1);
}
if (requestedDigits != 0)
{
buffer[0] = (byte)('\0');
length = 0;
kappa = 0;
return false;
}
return TryRoundWeedCounted(
buffer,
length,
rest: fractionals,
tenKappa: one.f,
unit: wError,
ref kappa
);
}
// Generates the digits of input number w.
//
// w is a floating-point number (DiyFp), consisting of a significand and an exponent.
// Its exponent is bounded by kMinimalTargetExponent and kMaximalTargetExponent, hence:
// -60 <= w.e() <= -32.
//
// Returns false if it fails, in which case the generated digits in the buffer should not be used.
//
// Preconditions:
// low, w and high are correct up to 1 ulp (unit in the last place). That is, their error must be less than a unit of their last digits.
// low.e() == w.e() == high.e()
// low < w < high, and taking into account their error: low~ <= high~
// kMinimalTargetExponent <= w.e() <= kMaximalTargetExponent
//
// Postconditions:
// Returns false if procedure fails; otherwise:
// * buffer is not null-terminated, but len contains the number of digits.
// * buffer contains the shortest possible decimal digit-sequence such that LOW < buffer * 10^kappa < HIGH, where LOW and HIGH are the correct values of low and high (without their error).
// * If more than one decimal representation gives the minimal number of decimal digits then the one closest to W (where W is the correct value of w) is chosen.
//
// This procedure takes into account the imprecision of its input numbers.
// If the precision is not enough to guarantee all the postconditions then false is returned.
// This usually happens rarely (~0.5%).
//
// Say, for the sake of example, that:
// w.e() == -48, and w.f() == 0x1234567890abcdef
//
// w's value can be computed by w.f() * 2^w.e()
//
// We can obtain w's integral digits by simply shifting w.f() by -w.e().
// -> w's integral part is 0x1234
// w's fractional part is therefore 0x567890abcdef.
//
// Printing w's integral part is easy (simply print 0x1234 in decimal).
//
// In order to print its fraction we repeatedly multiply the fraction by 10 and get each digit.
// For example, the first digit after the point would be computed by
// (0x567890abcdef * 10) >> 48. -> 3
//
// The whole thing becomes slightly more complicated because we want to stop once we have enough digits.
// That is, once the digits inside the buffer represent 'w' we can stop.
//
// Everything inside the interval low - high represents w.
// However we have to pay attention to low, high and w's imprecision.
private static bool TryDigitGenShortest(in DiyFp low, in DiyFp w, in DiyFp high, Span<byte> buffer, out int length, out int kappa)
{
Debug.Assert(low.e == w.e);
Debug.Assert(w.e == high.e);
Debug.Assert((low.f + 1) <= (high.f - 1));
Debug.Assert(MinimalTargetExponent <= w.e);
Debug.Assert(w.e <= MaximalTargetExponent);
// low, w, and high are imprecise, but by less than one ulp (unit in the last place).
//
// If we remove (resp. add) 1 ulp from low (resp. high) we are certain that the new numbers
// are outside of the interval we want the final representation to lie in.
//
// Inversely adding (resp. removing) 1 ulp from low (resp. high) would yield numbers that
// are certain to lie in the interval. We will use this fact later on.
//
// We will now start by generating the digits within the uncertain interval.
// Later, we will weed out representations that lie outside the safe interval and thus might lie outside the correct interval.
ulong unit = 1;
var tooLow = new DiyFp(low.f - unit, low.e);
var tooHigh = new DiyFp(high.f + unit, high.e);
// tooLow and tooHigh are guaranteed to lie outside the interval we want the generated number in.
DiyFp unsafeInterval = tooHigh.Subtract(in tooLow);
// We now cut the input number into two parts: the integral digits and the fractional digits.
// We will not write any decimal separator, but adapt kappa instead.
//
// Reminder: we are currently computing the digits (Stored inside the buffer) such that:
// tooLow < buffer * 10^kappa < tooHigh
//
// We use tooHigh for the digitGeneration and stop as soon as possible.
// If we stop early, we effectively round down.
var one = new DiyFp(1UL << -w.e, w.e);
// Division by one is a shift.
uint integrals = (uint)(tooHigh.f >> -one.e);
// Modulo by one is an and.
ulong fractionals = tooHigh.f & (one.f - 1);
uint divisor = BiggestPowerTen(integrals, DiyFp.SignificandSize - (-one.e), out kappa);
length = 0;
// Loop invariant:
// buffer = tooHigh / 10^kappa (integer division)
// These invariants hold for the first iteration:
// kappa has been initialized with the divisor exponent + 1
// The divisor is the biggest power of ten that is smaller than integrals
while (kappa > 0)
{
uint digit;
(digit, integrals) = Math.DivRem(integrals, divisor);
Debug.Assert(digit <= 9);
buffer[length] = (byte)('0' + digit);
length++;
kappa--;
// Note that kappa now equals the exponent of the
// divisor and that the invariant thus holds again.
ulong rest = ((ulong)(integrals) << -one.e) + fractionals;
// Invariant: tooHigh = buffer * 10^kappa + DiyFp(rest, one.e)
// Reminder: unsafeInterval.e == one.e
if (rest < unsafeInterval.f)
{
// Rounding down (by not emitting the remaining digits)
// yields a number that lies within the unsafe interval
return TryRoundWeedShortest(
buffer,
length,
tooHigh.Subtract(w).f,
unsafeInterval.f,
rest,
tenKappa: ((ulong)(divisor)) << -one.e,
unit
);
}
divisor /= 10;
}
// The integrals have been generated and we are at the point of the decimal separator.
// In the following loop, we simply multiply the remaining digits by 10 and divide by one.
// We just need to pay attention to multiply associated data (the unit), too.
// Note that the multiplication by 10 does not overflow because:
// w.e >= -60 and thus one.e >= -60
Debug.Assert(one.e >= MinimalTargetExponent);
Debug.Assert(fractionals < one.f);
Debug.Assert((ulong.MaxValue / 10) >= one.f);
while (true)
{
fractionals *= 10;
unit *= 10;
unsafeInterval = new DiyFp(unsafeInterval.f * 10, unsafeInterval.e);
// Integer division by one.
uint digit = (uint)(fractionals >> -one.e);
Debug.Assert(digit <= 9);
buffer[length] = (byte)('0' + digit);
length++;
kappa--;
// Modulo by one.
fractionals &= (one.f - 1);
if (fractionals < unsafeInterval.f)
{
return TryRoundWeedShortest(
buffer,
length,
tooHigh.Subtract(w).f * unit,
unsafeInterval.f,
rest: fractionals,
tenKappa: one.f,
unit
);
}
}
}
// Returns a cached power-of-ten with a binary exponent in the range [minExponent; maxExponent] (boundaries included).
private static DiyFp GetCachedPowerForBinaryExponentRange(int minExponent, int maxExponent, out int decimalExponent)
{
Debug.Assert(CachedPowersSignificand.Length == CachedPowersBinaryExponent.Length);
Debug.Assert(CachedPowersSignificand.Length == CachedPowersDecimalExponent.Length);
double k = Math.Ceiling((minExponent + DiyFp.SignificandSize - 1) * D1Log210);
int index = ((CachedPowersOffset + (int)(k) - 1) / CachedPowersDecimalExponentDistance) + 1;
Debug.Assert((uint)(index) < CachedPowersSignificand.Length);
Debug.Assert(minExponent <= CachedPowersBinaryExponent[index]);
Debug.Assert(CachedPowersBinaryExponent[index] <= maxExponent);
decimalExponent = CachedPowersDecimalExponent[index];
return new DiyFp(CachedPowersSignificand[index], CachedPowersBinaryExponent[index]);
}
// Rounds the buffer upwards if the result is closer to v by possibly adding 1 to the buffer.
// If the precision of the calculation is not sufficient to round correctly, return false.
//
// The rounding might shift the whole buffer, in which case, the kappy is adjusted.
// For example "99", kappa = 3 might become "10", kappa = 4.
//
// If (2 * rest) > tenKappa then the buffer needs to be round up.
// rest can have an error of +/- 1 unit.
// This function accounts for the imprecision and returns false if the rounding direction cannot be unambiguously determined.
//
// Preconditions:
// rest < tenKappa
private static bool TryRoundWeedCounted(Span<byte> buffer, int length, ulong rest, ulong tenKappa, ulong unit, ref int kappa)
{
Debug.Assert(rest < tenKappa);
// The following tests are done in a specific order to avoid overflows.
// They will work correctly with any ulong values of rest < tenKappa and unit.
//
// If the unit is too big, then we don't know which way to round.
// For example, a unit of 50 means that the real number lies within rest +/- 50.
// If 10^kappa == 40, then there is no way to tell which way to round.
//
// Even if unit is just half the size of 10^kappa we are already completely lost.
// And after the previous test, we know that the expression will not over/underflow.
if ((unit >= tenKappa) || ((tenKappa - unit) <= unit))
{
return false;
}
// If 2 * (rest + unit) <= 10^kappa, we can safely round down.
if (((tenKappa - rest) > rest) && ((tenKappa - (2 * rest)) >= (2 * unit)))
{
return true;
}
// If 2 * (rest - unit) >= 10^kappa, we can safely round up.
if ((rest > unit) && (tenKappa <= (rest - unit) || ((tenKappa - (rest - unit)) <= (rest - unit))))
{
// Increment the last digit recursively until we find a non '9' digit.
buffer[length - 1]++;
for (int i = (length - 1); i > 0; i--)
{
if (buffer[i] != ('0' + 10))
{
break;
}
buffer[i] = (byte)('0');
buffer[i - 1]++;
}
// If the first digit is now '0'+10, we had a buffer with all '9's.
// With the exception of the first digit, all digits are now '0'.
// Simply switch the first digit to '1' and adjust the kappa.
// For example, "99" becomes "10" and the power (the kappa) is increased.
if (buffer[0] == ('0' + 10))
{
buffer[0] = (byte)('1');
kappa++;
}
return true;
}
return false;
}
// Adjusts the last digit of the generated number and screens out generated solutions that may be inaccurate.
// A solution may be inaccurate if it is outside the safe interval or if we cannot provide that it is closer to the input than a neighboring representation of the same length.
//
// Input:
// buffer containing the digits of tooHigh / 10^kappa
// the buffer's length
// distanceTooHighW == (tooHigh - w).f * unit
// unsafeInterval == (tooHigh - tooLow).f * unit
// rest = (tooHigh - buffer * 10^kapp).f * unit
// tenKappa = 10^kappa * unit
// unit = the common multiplier
//
// Output:
// Returns true if the buffer is guaranteed to contain the closest representable number to the input.
//
// Modifies the generated digits in the buffer to approach (round towards) w.
private static bool TryRoundWeedShortest(Span<byte> buffer, int length, ulong distanceTooHighW, ulong unsafeInterval, ulong rest, ulong tenKappa, ulong unit)
{
ulong smallDistance = distanceTooHighW - unit;
ulong bigDistance = distanceTooHighW + unit;
// Let wLow = tooHigh - bigDistance, and wHigh = tooHigh - smallDistance.
//
// Note: wLow < w < wHigh
//
// The real w * unit must lie somewhere inside the interval
// ]w_low; w_high[ (often written as "(w_low; w_high)")
// Basically the buffer currently contains a number in the unsafe interval
// ]too_low; too_high[ with too_low < w < too_high