This repository has been archived by the owner on Aug 2, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 344
/
Copy pathDataFrame.IO.cs
310 lines (289 loc) · 12.3 KB
/
DataFrame.IO.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
// Licensed to the .NET Foundation under one or more agreements.
// The .NET Foundation licenses this file to you under the MIT license.
// See the LICENSE file in the project root for more information.
using System;
using System.Collections.Generic;
using System.IO;
using System.Text;
namespace Microsoft.Data.Analysis
{
public partial class DataFrame
{
private const int DefaultStreamReaderBufferSize = 1024;
private static Type GuessKind(int col, List<string[]> read)
{
Type res = typeof(string);
int nbline = 0;
foreach (var line in read)
{
if (col >= line.Length)
throw new FormatException(string.Format(Strings.LessColumnsThatExpected, nbline + 1));
string val = line[col];
if (string.Equals(val, "null", StringComparison.OrdinalIgnoreCase))
{
continue;
}
bool boolParse = bool.TryParse(val, out bool boolResult);
if (boolParse)
{
res = DetermineType(nbline == 0, typeof(bool), res);
++nbline;
continue;
}
else
{
if (string.IsNullOrEmpty(val))
{
res = DetermineType(nbline == 0, typeof(bool), res);
continue;
}
}
bool floatParse = float.TryParse(val, out float floatResult);
if (floatParse)
{
res = DetermineType(nbline == 0, typeof(float), res);
++nbline;
continue;
}
else
{
if (string.IsNullOrEmpty(val))
{
res = DetermineType(nbline == 0, typeof(float), res);
continue;
}
}
res = DetermineType(nbline == 0, typeof(string), res);
++nbline;
}
return res;
}
private static Type DetermineType(bool first, Type suggested, Type previous)
{
if (first)
return suggested;
else
return MaxKind(suggested, previous);
}
private static Type MaxKind(Type a, Type b)
{
if (a == typeof(string) || b == typeof(string))
return typeof(string);
if (a == typeof(float) || b == typeof(float))
return typeof(float);
if (a == typeof(bool) || b == typeof(bool))
return typeof(bool);
return typeof(string);
}
/// <summary>
/// Reads a text file as a DataFrame.
/// Follows pandas API.
/// </summary>
/// <param name="filename">filename</param>
/// <param name="separator">column separator</param>
/// <param name="header">has a header or not</param>
/// <param name="columnNames">column names (can be empty)</param>
/// <param name="dataTypes">column types (can be empty)</param>
/// <param name="numRows">number of rows to read</param>
/// <param name="guessRows">number of rows used to guess types</param>
/// <param name="addIndexColumn">add one column with the row index</param>
/// <param name="encoding">The character encoding. Defaults to UTF8 if not specified</param>
/// <returns>DataFrame</returns>
public static DataFrame LoadCsv(string filename,
char separator = ',', bool header = true,
string[] columnNames = null, Type[] dataTypes = null,
int numRows = -1, int guessRows = 10,
bool addIndexColumn = false, Encoding encoding = null)
{
using (Stream fileStream = new FileStream(filename, FileMode.Open))
{
return LoadCsv(fileStream,
separator: separator, header: header, columnNames: columnNames, dataTypes: dataTypes, numberOfRowsToRead: numRows,
guessRows: guessRows, addIndexColumn: addIndexColumn, encoding: encoding);
}
}
private static string GetColumnName(string[] columnNames, int columnIndex)
{
return columnNames == null ? "Column" + columnIndex.ToString() : columnNames[columnIndex];
}
private static DataFrameColumn CreateColumn(Type kind, string[] columnNames, int columnIndex)
{
DataFrameColumn ret;
if (kind == typeof(bool))
{
ret = new BooleanDataFrameColumn(GetColumnName(columnNames, columnIndex));
}
else if (kind == typeof(int))
{
ret = new Int32DataFrameColumn(GetColumnName(columnNames, columnIndex));
}
else if (kind == typeof(float))
{
ret = new SingleDataFrameColumn(GetColumnName(columnNames, columnIndex));
}
else if (kind == typeof(string))
{
ret = new StringDataFrameColumn(GetColumnName(columnNames, columnIndex), 0);
}
else if (kind == typeof(long))
{
ret = new Int64DataFrameColumn(GetColumnName(columnNames, columnIndex));
}
else if (kind == typeof(decimal))
{
ret = new DecimalDataFrameColumn(GetColumnName(columnNames, columnIndex));
}
else if (kind == typeof(byte))
{
ret = new ByteDataFrameColumn(GetColumnName(columnNames, columnIndex));
}
else if (kind == typeof(char))
{
ret = new CharDataFrameColumn(GetColumnName(columnNames, columnIndex));
}
else if (kind == typeof(double))
{
ret = new DoubleDataFrameColumn(GetColumnName(columnNames, columnIndex));
}
else if (kind == typeof(sbyte))
{
ret = new SByteDataFrameColumn(GetColumnName(columnNames, columnIndex));
}
else if (kind == typeof(short))
{
ret = new Int16DataFrameColumn(GetColumnName(columnNames, columnIndex));
}
else if (kind == typeof(uint))
{
ret = new UInt32DataFrameColumn(GetColumnName(columnNames, columnIndex));
}
else if (kind == typeof(ulong))
{
ret = new UInt64DataFrameColumn(GetColumnName(columnNames, columnIndex));
}
else if (kind == typeof(ushort))
{
ret = new UInt16DataFrameColumn(GetColumnName(columnNames, columnIndex));
}
else
{
throw new NotSupportedException(nameof(kind));
}
return ret;
}
/// <summary>
/// Reads a seekable stream of CSV data into a DataFrame.
/// Follows pandas API.
/// </summary>
/// <param name="csvStream">stream of CSV data to be read in</param>
/// <param name="separator">column separator</param>
/// <param name="header">has a header or not</param>
/// <param name="columnNames">column names (can be empty)</param>
/// <param name="dataTypes">column types (can be empty)</param>
/// <param name="numberOfRowsToRead">number of rows to read not including the header(if present)</param>
/// <param name="guessRows">number of rows used to guess types</param>
/// <param name="addIndexColumn">add one column with the row index</param>
/// <param name="encoding">The character encoding. Defaults to UTF8 if not specified</param>
/// <returns><see cref="DataFrame"/></returns>
public static DataFrame LoadCsv(Stream csvStream,
char separator = ',', bool header = true,
string[] columnNames = null, Type[] dataTypes = null,
long numberOfRowsToRead = -1, int guessRows = 10, bool addIndexColumn = false,
Encoding encoding = null)
{
if (!csvStream.CanSeek)
{
throw new ArgumentException(Strings.NonSeekableStream, nameof(csvStream));
}
if (dataTypes == null && guessRows <= 0)
{
throw new ArgumentException(string.Format(Strings.ExpectedEitherGuessRowsOrDataTypes, nameof(guessRows), nameof(dataTypes)));
}
var linesForGuessType = new List<string[]>();
long rowline = 0;
int numberOfColumns = dataTypes?.Length ?? 0;
if (header == true && numberOfRowsToRead != -1)
{
numberOfRowsToRead++;
}
List<DataFrameColumn> columns;
long streamStart = csvStream.Position;
// First pass: schema and number of rows.
using (var streamReader = new StreamReader(csvStream, encoding ?? Encoding.UTF8, detectEncodingFromByteOrderMarks: true, DefaultStreamReaderBufferSize, leaveOpen: true))
{
string line = null;
line = streamReader.ReadLine();
while (line != null)
{
if ((numberOfRowsToRead == -1) || rowline < numberOfRowsToRead)
{
if (linesForGuessType.Count < guessRows || (header && rowline == 0))
{
var spl = line.Split(separator);
if (header && rowline == 0)
{
if (columnNames == null)
{
columnNames = spl;
}
}
else
{
linesForGuessType.Add(spl);
numberOfColumns = Math.Max(numberOfColumns, spl.Length);
}
}
}
++rowline;
if (rowline == guessRows || guessRows == 0)
{
break;
}
line = streamReader.ReadLine();
}
if (rowline == 0)
{
throw new FormatException(Strings.EmptyFile);
}
columns = new List<DataFrameColumn>(numberOfColumns);
// Guesses types or looks up dataTypes and adds columns.
for (int i = 0; i < numberOfColumns; ++i)
{
Type kind = dataTypes == null ? GuessKind(i, linesForGuessType) : dataTypes[i];
columns.Add(CreateColumn(kind, columnNames, i));
}
DataFrame ret = new DataFrame(columns);
line = null;
streamReader.DiscardBufferedData();
streamReader.BaseStream.Seek(streamStart, SeekOrigin.Begin);
// Fills values.
line = streamReader.ReadLine();
rowline = 0;
while (line != null && (numberOfRowsToRead == -1 || rowline < numberOfRowsToRead))
{
var spl = line.Split(separator);
if (header && rowline == 0)
{
// Skips.
}
else
{
ret.Append(spl, inPlace: true);
}
++rowline;
line = streamReader.ReadLine();
}
if (addIndexColumn)
{
PrimitiveDataFrameColumn<int> indexColumn = new PrimitiveDataFrameColumn<int>("IndexColumn", columns[0].Length);
for (int i = 0; i < columns[0].Length; i++)
{
indexColumn[i] = i;
}
columns.Insert(0, indexColumn);
}
return ret;
}
}
}
}