Skip to content

Latest commit

 

History

History
50 lines (37 loc) · 1.05 KB

README.md

File metadata and controls

50 lines (37 loc) · 1.05 KB

medium-latex-support

GitHub's LaTeX support examples

Basic example

When $a \ne 0$, there are two solutions to $(ax^2 + bx + c = 0)$ and they are

$$ x = {-b \pm \sqrt{b^2-4ac} \over 2a} $$

The Cauchy-Schwarz Inequality

$$\left( \sum_{k=1}^n a_k b_k \right)^2 \leq \left( \sum_{k=1}^n a_k^2 \right) \left( \sum_{k=1}^n b_k^2 \right)$$

Einstein's Field Equations

$$R_{\mu \nu} - {1 \over 2}R , g_{\mu \nu} + \Lambda g_{\mu \nu}= {8 \pi G \over c^4} T_{\mu \nu}$$

Sample matrix

$$ \begin{matrix} 1 & x & x^2 \\ 1 & y & y^2 \\ 1 & z & z^2 \\ \end{matrix} $$

Aligned equations

$$ \begin{align} \sqrt{37} & = \sqrt{\frac{73^2-1}{12^2}} \\ & = \sqrt{\frac{73^2}{12^2}\cdot\frac{73^2-1}{73^2}} \\ & = \sqrt{\frac{73^2}{12^2}}\sqrt{\frac{73^2-1}{73^2}} \\ & = \frac{73}{12}\sqrt{1 - \frac{1}{73^2}} \\ & \approx \frac{73}{12}\left(1 - \frac{1}{2\cdot73^2}\right) \end{align} $$

Arrays

$$ \begin{array}{c|lcr} n & \text{Left} & \text{Center} & \text{Right} \\ \hline 1 & 0.24 & 1 & 125 \\ 2 & -1 & 189 & -8 \\ 3 & -20 & 2000 & 1+10i \end{array} $$