-
Notifications
You must be signed in to change notification settings - Fork 19
/
Eigenbackground.hpp
105 lines (84 loc) · 3.48 KB
/
Eigenbackground.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
/****************************************************************************
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
******************************************************************************/
/****************************************************************************
*
* Eigenbackground.hpp
*
* Purpose: Implementation of the Eigenbackground background subtraction
* algorithm developed by Oliver et al.
*
* Author: Donovan Parks, September 2007
*
* "A Bayesian Computer Vision System for Modeling Human Interactions"
* Nuria Oliver, Barbara Rosario, Alex P. Pentland 2000
Example:
Algorithms::BackgroundSubtraction::EigenbackgroundParams params;
params.SetFrameSize(width, height);
params.LowThreshold() = 15*15;
params.HighThreshold() = 2*params.LowThreshold(); // Note: high threshold is used by post-processing
params.HistorySize() = 100;
params.EmbeddedDim() = 20;
Algorithms::BackgroundSubtraction::Eigenbackground bgs;
bgs.Initalize(params);
******************************************************************************/
#ifndef _ELGAMMAL_H_
#define _ELGAMMAL_H_
#include "Bgs.hpp"
namespace Algorithms
{
namespace BackgroundSubtraction
{
// --- Parameters used by the Mean BGS algorithm ---
class EigenbackgroundParams : public BgsParams
{
public:
float &LowThreshold() { return m_low_threshold; }
float &HighThreshold() { return m_high_threshold; }
int &HistorySize() { return m_history_size; }
int &EmbeddedDim() { return m_dim; }
private:
// A pixel will be classified as foreground if the squared distance of any
// color channel is greater than the specified threshold
float m_low_threshold;
float m_high_threshold;
int m_history_size; // number frames used to create eigenspace
int m_dim; // eigenspace dimensionality
};
// --- Eigenbackground BGS algorithm ---
class Eigenbackground : public Bgs
{
public:
Eigenbackground();
~Eigenbackground();
void Initalize(const BgsParams& param);
void InitModel(const RgbImage& data);
void Subtract(int frame_num, const RgbImage& data,
BwImage& low_threshold_mask, BwImage& high_threshold_mask);
void Update(int frame_num, const RgbImage& data, const BwImage& update_mask);
RgbImage* Background() { return &m_background; }
private:
void UpdateHistory(int frameNum, const RgbImage& newFrame);
EigenbackgroundParams m_params;
CvMat* m_pcaData;
CvMat* m_pcaAvg;
CvMat* m_eigenValues;
CvMat* m_eigenVectors;
RgbImage m_background;
};
};
};
#endif