forked from apache/mxnet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
benchmark.py
212 lines (193 loc) · 9.23 KB
/
benchmark.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
from __future__ import print_function
import logging
import argparse
import os
import time
import sys
import shutil
import csv
import re
import subprocess, threading
import pygal
import importlib
import collections
import threading
import copy
'''
Setup Logger and LogLevel
'''
def setup_logging(log_loc):
if os.path.exists(log_loc):
shutil.move(log_loc, log_loc + "_" + str(int(os.path.getctime(log_loc))))
os.makedirs(log_loc)
log_file = '{}/benchmark.log'.format(log_loc)
LOGGER = logging.getLogger('benchmark')
LOGGER.setLevel(logging.INFO)
formatter = logging.Formatter('%(asctime)s %(levelname)s:%(name)s %(message)s')
file_handler = logging.FileHandler(log_file)
console_handler = logging.StreamHandler()
file_handler.setFormatter(formatter)
console_handler.setFormatter(formatter)
LOGGER.addHandler(file_handler)
LOGGER.addHandler(console_handler)
return LOGGER
'''
Runs the command given in the cmd_args for specified timeout period
and terminates after
'''
class RunCmd(threading.Thread):
def __init__(self, cmd_args, logfile):
threading.Thread.__init__(self)
self.cmd_args = cmd_args
self.logfile = logfile
self.process = None
def run(self):
LOGGER = logging.getLogger('benchmark')
LOGGER.info('started running %s', ' '.join(self.cmd_args))
log_fd = open(self.logfile, 'w')
self.process = subprocess.Popen(self.cmd_args, stdout=log_fd, stderr=subprocess.STDOUT, universal_newlines=True)
for line in self.process.communicate():
LOGGER.debug(line)
log_fd.close()
LOGGER.info('finished running %s', ' '.join(self.cmd_args))
def startCmd(self, timeout):
LOGGER.debug('Attempting to start Thread to run %s', ' '.join(self.cmd_args))
self.start()
self.join(timeout)
if self.is_alive():
LOGGER.debug('Terminating process running %s', ' '.join(self.cmd_args))
self.process.terminate()
self.join()
time.sleep(1)
return
log_loc = './benchmark'
LOGGER = setup_logging(log_loc)
class Network(object):
def __init__(self, name, img_size, batch_size):
self.name = name
self.img_size = img_size
self.batch_size = batch_size
self.gpu_speedup = collections.OrderedDict()
def parse_args():
class NetworkArgumentAction(argparse.Action):
def validate(self, attrs):
args = attrs.split(':')
if len(args) != 3 or isinstance(args[0], str) == False:
print('expected network attributes in format network_name:batch_size:image_size \
\nThe network_name is a valid model defined as network_name.py in the image-classification/symbol folder.')
sys.exit(1)
try:
#check if the network exists
importlib.import_module('symbols.'+ args[0])
batch_size = int(args[1])
img_size = int(args[2])
return Network(name=args[0], batch_size=batch_size, img_size=img_size)
except Exception as e:
print('expected network attributes in format network_name:batch_size:image_size \
\nThe network_name is a valid model defined as network_name.py in the image-classification/symbol folder.')
print(e)
sys.exit(1)
def __init__(self, *args, **kw):
kw['nargs'] = '+'
argparse.Action.__init__(self, *args, **kw)
def __call__(self, parser, namespace, values, option_string=None):
if isinstance(values, list) == True:
setattr(namespace, self.dest, map(self.validate, values))
else:
setattr(namespace, self.dest, self.validate(values))
parser = argparse.ArgumentParser(description='Run Benchmark on various imagenet networks using train_imagenent.py')
parser.add_argument('--networks', dest='networks', nargs= '+', type=str, help= 'one or more networks in the format network_name:batch_size:image_size \
\nThe network_name is a valid model defined as network_name.py in the image-classification/symbol folder.',action=NetworkArgumentAction)
parser.add_argument('--worker_file', type=str, help='file that contains a list of worker hostnames or list of worker ip addresses that can be sshed without a password.',required=True)
parser.add_argument('--worker_count', type=int, help='number of workers to run benchmark on.', required=True)
parser.add_argument('--gpu_count', type=int, help='number of gpus on each worker to use.', required=True)
args = parser.parse_args()
return args
def series(max_count):
i=1
s=[]
while i <= max_count:
s.append(i)
i=i*2
if s[-1] < max_count:
s.append(max_count)
return s
'''
Choose the middle iteration to get the images processed per sec
'''
def images_processed(log_loc):
f=open(log_loc)
img_per_sec = re.findall("(?:Batch\s+\[30\]\\\\tSpeed:\s+)(\d+\.\d+)(?:\s+)", str(f.readlines()))
f.close()
img_per_sec = map(float, img_per_sec)
total_img_per_sec = sum(img_per_sec)
return total_img_per_sec
def generate_hosts_file(num_nodes, workers_file, args_workers_file):
f = open(workers_file, 'w')
output = subprocess.check_output(['head', '-n', str(num_nodes), args_workers_file])
f.write(output)
f.close()
return
def stop_old_processes(hosts_file):
stop_args = ['python', '../../tools/kill-mxnet.py', hosts_file]
stop_args_str = ' '.join(stop_args)
LOGGER.info('killing old remote processes\n %s', stop_args_str)
stop = subprocess.check_output(stop_args, stderr=subprocess.STDOUT)
LOGGER.debug(stop)
time.sleep(1)
def run_imagenet(kv_store, data_shape, batch_size, num_gpus, num_nodes, network, args_workers_file):
imagenet_args=['python', 'train_imagenet.py', '--gpus', ','.join(str(i) for i in range(num_gpus)), \
'--network', network, '--batch-size', str(batch_size * num_gpus), \
'--image-shape', '3,' + str(data_shape) + ',' + str(data_shape), '--num-epochs', '1' ,'--kv-store', kv_store, '--benchmark', '1', '--disp-batches', '10']
log = log_loc + '/' + network + '_' + str(num_nodes*num_gpus) + '_log'
hosts = log_loc + '/' + network + '_' + str(num_nodes*num_gpus) + '_workers'
generate_hosts_file(num_nodes, hosts, args_workers_file)
stop_old_processes(hosts)
launch_args = ['../../tools/launch.py', '-n', str(num_nodes), '-s', str(num_nodes*2), '-H', hosts, ' '.join(imagenet_args) ]
#use train_imagenet when running on a single node
if kv_store == 'device':
imagenet = RunCmd(imagenet_args, log)
imagenet.startCmd(timeout = 60 * 10)
else:
launch = RunCmd(launch_args, log)
launch.startCmd(timeout = 60 * 10)
stop_old_processes(hosts)
img_per_sec = images_processed(log)
LOGGER.info('network: %s, num_gpus: %d, image/sec: %f', network, num_gpus*num_nodes, img_per_sec)
return img_per_sec
def plot_graph(args):
speedup_chart = pygal.Line(x_title ='gpus',y_title ='speedup', logarithmic=True)
speedup_chart.x_labels = map(str, series(args.worker_count * args.gpu_count))
speedup_chart.add('ideal speedup', series(args.worker_count * args.gpu_count))
for net in args.networks:
image_single_gpu = net.gpu_speedup[1] if 1 in net.gpu_speedup or not net.gpu_speedup[1] else 1
y_values = [ each/image_single_gpu for each in net.gpu_speedup.values() ]
LOGGER.info('%s: image_single_gpu:%.2f' %(net.name, image_single_gpu))
LOGGER.debug('network:%s, y_values: %s' % (net.name, ' '.join(map(str, y_values))))
speedup_chart.add(net.name , y_values \
, formatter= lambda y_val, img = copy.deepcopy(image_single_gpu), batch_size = copy.deepcopy(net.batch_size): 'speedup:%.2f, img/sec:%.2f, batch/gpu:%d' % \
(0 if y_val is None else y_val, 0 if y_val is None else y_val * img, batch_size))
speedup_chart.render_to_file(log_loc + '/speedup.svg')
def write_csv(log_loc, args):
for net in args.networks:
with open(log_loc + '/' + net.name + '.csv', 'wb') as f:
w = csv.writer(f)
w.writerow(['num_gpus', 'img_processed_per_sec'])
w.writerows(net.gpu_speedup.items())
def main():
args = parse_args()
for net in args.networks:
#use kv_store='device' when running on 1 node
for num_gpus in series(args.gpu_count):
imgs_per_sec = run_imagenet(kv_store='device', data_shape=net.img_size, batch_size=net.batch_size, \
num_gpus=num_gpus, num_nodes=1, network=net.name, args_workers_file=args.worker_file)
net.gpu_speedup[num_gpus] = imgs_per_sec
for num_nodes in series(args.worker_count)[1::]:
imgs_per_sec = run_imagenet(kv_store='dist_sync_device', data_shape=net.img_size, batch_size=net.batch_size, \
num_gpus=args.gpu_count, num_nodes=num_nodes, network=net.name, args_workers_file=args.worker_file)
net.gpu_speedup[num_nodes * args.gpu_count] = imgs_per_sec
LOGGER.info('Network: %s (num_gpus, images_processed): %s', net.name, ','.join(map(str, net.gpu_speedup.items())))
write_csv(log_loc, args)
plot_graph(args)
if __name__ == '__main__':
main()