forked from csrhddlam/axial-deeplab
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdeeplab_test.py
244 lines (198 loc) · 8.4 KB
/
deeplab_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
import matplotlib.pyplot as plt
import argparse
import torch
import numpy as np
from torchsummary import summary
from lib.models.axialnet import axial50m
from torch.utils.tensorboard import SummaryWriter
import torch.multiprocessing as multiprocessing
from lib.datasets.iharmony_2 import iHarmonyLoader
from lib.models.axialnet import AxialDecoderBlock
class SimpleDecoderBlock(torch.nn.Module):
def __init__(self, in_ch, out_ch, conv_skip=False):
super().__init__()
self.conv_1 = torch.nn.Conv2d(in_ch, in_ch // 2, kernel_size=1)
self.bn_1 = torch.nn.BatchNorm2d(in_ch // 2)
self.relu = torch.nn.ReLU(inplace=True)
self.upsample = torch.nn.Upsample(scale_factor=2)
self.conv_2 = torch.nn.Conv2d(in_ch // 2, in_ch // 2, kernel_size=3, padding=(1,1))
self.bn_2 = torch.nn.BatchNorm2d(in_ch // 2)
self.conv_3 = torch.nn.Conv2d(in_ch // 2, out_ch, kernel_size=1)
self.bn_3 = torch.nn.BatchNorm2d(out_ch)
self.conv_m1 = torch.nn.Conv2d(in_ch, out_ch, kernel_size=1)
self.bn_m1 = torch.nn.BatchNorm2d(out_ch)
self.upsample_m = torch.nn.Upsample(scale_factor=2)
if conv_skip:
self.conv_skip = torch.nn.Conv2d(48, 96, kernel_size=1)
def forward(self, x, skip=None):
if isinstance(x, list):
x, skip = x
identity = x
# Main Branch
x = self.conv_1(x)
x = self.bn_1(x)
x = self.relu(x)
x = self.upsample(x)
x = self.conv_2(x)
x = self.bn_2(x)
x = self.relu(x)
x = self.conv_3(x)
x = self.bn_3(x)
# Skip branch
identity = self.conv_m1(identity)
identity = self.bn_m1(identity)
identity = self.relu(identity)
identity = self.upsample_m(identity)
x += identity
if skip is not None:
if hasattr(self, 'conv_skip'):
skip = self.conv_skip(skip)
x += skip
x = self.relu(x)
return x
class AxialDeeplab(torch.nn.Module):
def __init__(self, backbone, upsampling_block, base_ch=1536):
super().__init__()
self.backbone = backbone
self.backbone[1].register_forward_hook(get_activation(0))
self.backbone[4][2].bn2.register_forward_hook(get_activation(1))
self.backbone[5][3].bn2.register_forward_hook(get_activation(2))
self.backbone[6][5].bn2.register_forward_hook(get_activation(3))
# self.up1 = upsampling_block(base_ch, base_ch // 2)
self.up1 = AxialDecoderBlock(base_ch, base_ch // 2, norm_layer=torch.nn.BatchNorm2d, kernel_size=14, groups=8, skip=True)
self.up2 = AxialDecoderBlock(base_ch // 2, base_ch // 4, norm_layer=torch.nn.BatchNorm2d, kernel_size=28, groups=8, skip=True)
self.up3 = AxialDecoderBlock(base_ch // 4, base_ch // 8, norm_layer=torch.nn.BatchNorm2d, kernel_size=56, groups=8, skip=True)
# self.up4 = AxialDecoderBlock(base_ch // 8, base_ch // 16, norm_layer=torch.nn.BatchNorm2d, kernel_size=112, groups=8, skip=True, hack=True ) # FIXME: This is hacky - find out what's happening
# self.up5 = AxialDecoderBlock(base_ch // 16, 3, norm_layer=torch.nn.BatchNorm2d, kernel_size=224, skip=False)
# self.up2 = upsampling_block(base_ch // 2, base_ch // 4)
# self.up3 = upsampling_block(base_ch // 4, base_ch // 8)
self.up4 = upsampling_block(base_ch // 8, base_ch // 16, conv_skip=True) # FIXME: This is hacky - find out what's happening
self.up5 = upsampling_block(base_ch // 16, 3)
def forward(self, x):
identity = x
x = self.backbone(x)
x = self.up1([x, skips[3].to('cuda')])
x = self.up2([x, skips[2].to('cuda')])
x = self.up3([x, skips[1].to('cuda')])
x = self.up4([x, skips[0].to('cuda')])
x = self.up5([x, identity])
return x
skips = [None for _ in range(4)]
def get_activation(name):
def hook(module, input, output):
skips[name] = output.detach().to('cpu')
return hook
def make_deeplab():
backbone = axial50m(pretrained=True)
backbone = torch.nn.Sequential(*list(backbone.children())[:-2])
print(backbone)
model = AxialDeeplab(backbone, SimpleDecoderBlock)
return model
def run_epoch(model, dataloader, lossf, opt=None):
epoch_loss = 0.0
for batch, (xb, yb) in enumerate(dataloader):
print(f'Step {batch}/{len(dataloader)}')
if opt is None:
batch_loss, n, pred = loss_batch(model, lossf, xb, yb, opt)
else:
batch_loss, n = loss_batch(model, lossf, xb, yb, opt)
epoch_loss += batch_loss
if opt is None:
return epoch_loss, n, pred
else:
return epoch_loss, n
def loss_batch(model, lossf, xb, yb, opt=None):
xb = xb.to('cuda')
yb = yb.to('cuda')
pred = model(xb)
loss = lossf(pred, yb)
if opt is not None:
loss.backward()
opt.step()
opt.zero_grad()
return loss.item(), len(xb)
else:
return loss.item(), len(xb), pred
def fit(model, train_loader, val_loader, lossf, opt, epochs=100):
# Tensorboard
writer = SummaryWriter()
print(f'LOG DIR IS: {writer.log_dir}')
# Training
lowest_loss = 100.0
for epoch in range(epochs):
print(f'Epoch: {epoch+1}')
model.train()
train_loss, n = run_epoch(model, train_loader, lossf, opt)
writer.add_scalar('Loss/Train', train_loss/len(train_loader), epoch)
model.eval()
with torch.no_grad():
vloss, n, pred = run_epoch(model, val_loader, lossf, opt=None)
epoch_vloss = vloss/len(val_loader)
writer.add_scalar('Loss/Validation', epoch_vloss, epoch)
for p in pred:
writer.add_image('img', p.reshape(3, 224, 224), epoch)
if epoch_vloss < lowest_loss:
lowest_loss = epoch_vloss
torch.save(model.state_dict(), f'{writer.get_logdir()}/best_model.pt')
writer.close()
def train(args):
n_gpus = torch.cuda.device_count()
n_cpus = multiprocessing.cpu_count()
multiprocessing.set_start_method('spawn')
# Data
train_loader = torch.utils.data.DataLoader(
iHarmonyLoader(args.dataset, train=True),
batch_size=args.batch_size*n_gpus, shuffle=True,
num_workers=n_cpus, pin_memory=True,
drop_last=True)
val_loader = torch.utils.data.DataLoader(
iHarmonyLoader(args.dataset, train=False),
batch_size=args.batch_size*n_gpus, num_workers=n_cpus,
pin_memory=True, drop_last=True)
# Model
model = make_deeplab()
if n_gpus > 1:
model = torch.nn.DataParallel(model)
model.to('cuda')
print(model)
# Optimizer
lossf = torch.nn.MSELoss()
opt = torch.optim.Adam(model.parameters(), lr=args.lr)
# Fit
fit(model, train_loader, val_loader, lossf, opt, args.epochs)
def evaluate(args):
# Data
val_loader = torch.utils.data.DataLoader(
iHarmonyLoader(args.dataset, train=False), batch_size=1)
# Model
model = make_deeplab()
model = torch.nn.DataParallel(model)
model.load_state_dict(torch.load(args.weights))
model.to('cuda')
for (x, y) in val_loader:
# Predict and prepare for vis
p = model(x)
x = x.detach().to('cpu').permute(0, 2, 3, 1).squeeze().numpy() / 2 + 0.5
y = y.detach().to('cpu').permute(0, 2, 3, 1).squeeze().numpy()
p = p.detach().to('cpu').permute(0, 2, 3, 1).squeeze().numpy()
# Display sample
f, ax = plt.subplots(1,3)
ax[0].imshow(x)
ax[1].imshow(p)
ax[2].imshow(y)
plt.show()
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--train', action='store_true', default=False, help='Training flag')
parser.add_argument('--weights', type=str, help='Path to saved weights')
parser.add_argument('--dataset', default='all', help='Dataset name')
parser.add_argument('--epochs', default=100, type=int, help='Number of epochs (training only)')
parser.add_argument('--batch_size', default=10, type=int, help='Batch size (training only)')
parser.add_argument('--lr', default=0.001, type=float, help='Learning rate (training only)')
return parser.parse_args()
if __name__ == "__main__":
args = parse_args()
if args.train:
train(args)
else:
evaluate(args)