-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun.py
63 lines (51 loc) · 1.82 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import argparse
from dotmap import DotMap
import torch
import wandb
import hydra
import omegaconf
from hydra import compose, initialize
from src.common.logger import WandbTrainerLogger
from src.common.train_utils import set_global_seeds
from src.datasets import *
from src.models import *
from src.trainers import *
def run(args):
args = DotMap(args)
config_path = args.config_path
config_name = args.config_name
overrides = args.overrides
# Hydra Compose
initialize(version_base='1.3', config_path=config_path)
cfg = compose(config_name=config_name, overrides=overrides)
def eval_resolver(s: str):
return eval(s)
omegaconf.OmegaConf.register_new_resolver("eval", eval_resolver)
set_global_seeds(seed=cfg.seed)
device = torch.device(cfg.device)
# dataloader
# each subprocess will have a single separate thread.
torch.set_num_threads(1)
train_loaders, test_loader = build_dataloader(cfg.dataset)
# logger
logger = WandbTrainerLogger(cfg)
# model
model = build_model(cfg.model)
# trainer
trainer = build_trainer(cfg=cfg.trainer,
device=device,
train_loaders=train_loaders,
test_loader=test_loader,
logger=logger,
model=model)
# run
for task_idx in range(cfg.num_tasks):
trainer.train(task_idx)
wandb.finish()
if __name__ == '__main__':
parser = argparse.ArgumentParser(allow_abbrev=False)
parser.add_argument('--config_path', type=str, default='./configs')
parser.add_argument('--config_name', type=str, default='cifar10_resnet18')
parser.add_argument('--overrides', action='append', default=[])
args = parser.parse_args()
run(vars(args))