-
Notifications
You must be signed in to change notification settings - Fork 1.2k
/
train_ssd.py
420 lines (378 loc) · 19.8 KB
/
train_ssd.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
"""Train SSD"""
import argparse
import os
import logging
import warnings
import time
import numpy as np
import mxnet as mx
from mxnet import nd
from mxnet import gluon
from mxnet import autograd
import gluoncv as gcv
gcv.utils.check_version('0.6.0')
from gluoncv import data as gdata
from gluoncv import utils as gutils
from gluoncv.model_zoo import get_model
from gluoncv.data.batchify import Tuple, Stack, Pad
from gluoncv.data.transforms.presets.ssd import SSDDefaultTrainTransform
from gluoncv.data.transforms.presets.ssd import SSDDefaultValTransform
from gluoncv.data.transforms.presets.ssd import SSDDALIPipeline
from gluoncv.utils.metrics.voc_detection import VOC07MApMetric
from gluoncv.utils.metrics.coco_detection import COCODetectionMetric
from gluoncv.utils.metrics.accuracy import Accuracy
from mxnet.contrib import amp
try:
import horovod.mxnet as hvd
except ImportError:
hvd = None
try:
from nvidia.dali.plugin.mxnet import DALIGenericIterator
dali_found = True
except ImportError:
dali_found = False
def parse_args():
parser = argparse.ArgumentParser(description='Train SSD networks.')
parser.add_argument('--network', type=str, default='vgg16_atrous',
help="Base network name which serves as feature extraction base.")
parser.add_argument('--data-shape', type=int, default=300,
help="Input data shape, use 300, 512.")
parser.add_argument('--batch-size', type=int, default=32,
help='Training mini-batch size')
parser.add_argument('--dataset', type=str, default='voc',
help='Training dataset. Now support voc.')
parser.add_argument('--dataset-root', type=str, default='~/.mxnet/datasets/',
help='Path of the directory where the dataset is located.')
parser.add_argument('--num-workers', '-j', dest='num_workers', type=int,
default=4, help='Number of data workers, you can use larger '
'number to accelerate data loading, if you CPU and GPUs are powerful.')
parser.add_argument('--gpus', type=str, default='0',
help='Training with GPUs, you can specify 1,3 for example.')
parser.add_argument('--epochs', type=int, default=240,
help='Training epochs.')
parser.add_argument('--resume', type=str, default='',
help='Resume from previously saved parameters if not None. '
'For example, you can resume from ./ssd_xxx_0123.params')
parser.add_argument('--start-epoch', type=int, default=0,
help='Starting epoch for resuming, default is 0 for new training.'
'You can specify it to 100 for example to start from 100 epoch.')
parser.add_argument('--lr', type=float, default=0.001,
help='Learning rate, default is 0.001')
parser.add_argument('--lr-decay', type=float, default=0.1,
help='decay rate of learning rate. default is 0.1.')
parser.add_argument('--lr-decay-epoch', type=str, default='160,200',
help='epochs at which learning rate decays. default is 160,200.')
parser.add_argument('--momentum', type=float, default=0.9,
help='SGD momentum, default is 0.9')
parser.add_argument('--wd', type=float, default=0.0005,
help='Weight decay, default is 5e-4')
parser.add_argument('--log-interval', type=int, default=100,
help='Logging mini-batch interval. Default is 100.')
parser.add_argument('--save-prefix', type=str, default='',
help='Saving parameter prefix')
parser.add_argument('--save-interval', type=int, default=10,
help='Saving parameters epoch interval, best model will always be saved.')
parser.add_argument('--val-interval', type=int, default=1,
help='Epoch interval for validation, increase the number will reduce the '
'training time if validation is slow.')
parser.add_argument('--seed', type=int, default=233,
help='Random seed to be fixed.')
parser.add_argument('--syncbn', action='store_true',
help='Use synchronize BN across devices.')
parser.add_argument('--dali', action='store_true',
help='Use DALI for data loading and data preprocessing in training. '
'Currently supports only COCO.')
parser.add_argument('--amp', action='store_true',
help='Use MXNet AMP for mixed precision training.')
parser.add_argument('--horovod', action='store_true',
help='Use MXNet Horovod for distributed training. Must be run with OpenMPI. '
'--gpus is ignored when using --horovod.')
args = parser.parse_args()
if args.horovod:
assert hvd, "You are trying to use horovod support but it's not installed"
return args
def get_dataset(dataset, args):
if dataset.lower() == 'voc':
train_dataset = gdata.VOCDetection(
splits=[(2007, 'trainval'), (2012, 'trainval')])
val_dataset = gdata.VOCDetection(
splits=[(2007, 'test')])
val_metric = VOC07MApMetric(iou_thresh=0.5, class_names=val_dataset.classes)
elif dataset.lower() == 'coco':
train_dataset = gdata.COCODetection(root=args.dataset_root + "/coco", splits='instances_train2017')
val_dataset = gdata.COCODetection(root=args.dataset_root + "/coco", splits='instances_val2017', skip_empty=False)
val_metric = COCODetectionMetric(
val_dataset, args.save_prefix + '_eval', cleanup=True,
data_shape=(args.data_shape, args.data_shape))
# coco validation is slow, consider increase the validation interval
if args.val_interval == 1:
args.val_interval = 10
else:
raise NotImplementedError('Dataset: {} not implemented.'.format(dataset))
return train_dataset, val_dataset, val_metric
def get_dataloader(net, train_dataset, val_dataset, data_shape, batch_size, num_workers, ctx):
"""Get dataloader."""
width, height = data_shape, data_shape
# use fake data to generate fixed anchors for target generation
with autograd.train_mode():
_, _, anchors = net(mx.nd.zeros((1, 3, height, width), ctx))
anchors = anchors.as_in_context(mx.cpu())
batchify_fn = Tuple(Stack(), Stack(), Stack()) # stack image, cls_targets, box_targets
train_loader = gluon.data.DataLoader(
train_dataset.transform(SSDDefaultTrainTransform(width, height, anchors)),
batch_size, True, batchify_fn=batchify_fn, last_batch='rollover', num_workers=num_workers)
val_batchify_fn = Tuple(Stack(), Pad(pad_val=-1))
val_loader = gluon.data.DataLoader(
val_dataset.transform(SSDDefaultValTransform(width, height)),
batch_size, False, batchify_fn=val_batchify_fn, last_batch='keep', num_workers=num_workers)
return train_loader, val_loader
def get_dali_dataset(dataset_name, devices, args):
if dataset_name.lower() == "coco":
# training
expanded_file_root = os.path.expanduser(args.dataset_root)
coco_root = os.path.join(expanded_file_root,
'coco',
'train2017')
coco_annotations = os.path.join(expanded_file_root,
'coco',
'annotations',
'instances_train2017.json')
if args.horovod:
train_dataset = [gdata.COCODetectionDALI(num_shards=hvd.size(), shard_id=hvd.rank(), file_root=coco_root,
annotations_file=coco_annotations, device_id=hvd.local_rank())]
else:
train_dataset = [gdata.COCODetectionDALI(num_shards= len(devices), shard_id=i, file_root=coco_root,
annotations_file=coco_annotations, device_id=i) for i, _ in enumerate(devices)]
# validation
if (not args.horovod or hvd.rank() == 0):
val_dataset = gdata.COCODetection(root=os.path.join(args.dataset_root + '/coco'),
splits='instances_val2017',
skip_empty=False)
val_metric = COCODetectionMetric(
val_dataset, args.save_prefix + '_eval', cleanup=True,
data_shape=(args.data_shape, args.data_shape))
else:
val_dataset = None
val_metric = None
else:
raise NotImplementedError('Dataset: {} not implemented with DALI.'.format(dataset_name))
return train_dataset, val_dataset, val_metric
def get_dali_dataloader(net, train_dataset, val_dataset, data_shape, global_batch_size, num_workers, devices, ctx, horovod, seed):
width, height = data_shape, data_shape
with autograd.train_mode():
_, _, anchors = net(mx.nd.zeros((1, 3, height, width), ctx=ctx))
anchors = anchors.as_in_context(mx.cpu())
if horovod:
batch_size = global_batch_size // hvd.size()
pipelines = [SSDDALIPipeline(device_id=hvd.local_rank(), batch_size=batch_size,
data_shape=data_shape, anchors=anchors,
num_workers=num_workers, dataset_reader = train_dataset[0],
seed=seed)]
else:
num_devices = len(devices)
batch_size = global_batch_size // num_devices
pipelines = [SSDDALIPipeline(device_id=device_id, batch_size=batch_size,
data_shape=data_shape, anchors=anchors,
num_workers=num_workers,
dataset_reader = train_dataset[i],
seed=seed) for i, device_id in enumerate(devices)]
epoch_size = train_dataset[0].size()
if horovod:
epoch_size //= hvd.size()
train_loader = DALIGenericIterator(pipelines, [('data', DALIGenericIterator.DATA_TAG),
('bboxes', DALIGenericIterator.LABEL_TAG),
('label', DALIGenericIterator.LABEL_TAG)],
epoch_size, auto_reset=True)
# validation
if (not horovod or hvd.rank() == 0):
val_batchify_fn = Tuple(Stack(), Pad(pad_val=-1))
val_loader = gluon.data.DataLoader(
val_dataset.transform(SSDDefaultValTransform(width, height)),
global_batch_size, False, batchify_fn=val_batchify_fn, last_batch='keep', num_workers=num_workers)
else:
val_loader = None
return train_loader, val_loader
def save_params(net, best_map, current_map, epoch, save_interval, prefix):
current_map = float(current_map)
if current_map > best_map[0]:
best_map[0] = current_map
net.save_params('{:s}_best.params'.format(prefix, epoch, current_map))
with open(prefix+'_best_map.log', 'a') as f:
f.write('{:04d}:\t{:.4f}\n'.format(epoch, current_map))
if save_interval and epoch % save_interval == 0:
net.save_params('{:s}_{:04d}_{:.4f}.params'.format(prefix, epoch, current_map))
def validate(net, val_data, ctx, eval_metric):
"""Test on validation dataset."""
eval_metric.reset()
# set nms threshold and topk constraint
net.set_nms(nms_thresh=0.45, nms_topk=400)
net.hybridize(static_alloc=True, static_shape=True)
for batch in val_data:
data = gluon.utils.split_and_load(batch[0], ctx_list=ctx, batch_axis=0, even_split=False)
label = gluon.utils.split_and_load(batch[1], ctx_list=ctx, batch_axis=0, even_split=False)
det_bboxes = []
det_ids = []
det_scores = []
gt_bboxes = []
gt_ids = []
gt_difficults = []
for x, y in zip(data, label):
# get prediction results
ids, scores, bboxes = net(x)
det_ids.append(ids)
det_scores.append(scores)
# clip to image size
det_bboxes.append(bboxes.clip(0, batch[0].shape[2]))
# split ground truths
gt_ids.append(y.slice_axis(axis=-1, begin=4, end=5))
gt_bboxes.append(y.slice_axis(axis=-1, begin=0, end=4))
gt_difficults.append(y.slice_axis(axis=-1, begin=5, end=6) if y.shape[-1] > 5 else None)
# update metric
eval_metric.update(det_bboxes, det_ids, det_scores, gt_bboxes, gt_ids, gt_difficults)
return eval_metric.get()
def train(net, train_data, val_data, eval_metric, ctx, args):
"""Training pipeline"""
net.collect_params().reset_ctx(ctx)
if args.horovod:
hvd.broadcast_parameters(net.collect_params(), root_rank=0)
trainer = hvd.DistributedTrainer(
net.collect_params(), 'sgd',
{'learning_rate': args.lr, 'wd': args.wd, 'momentum': args.momentum})
else:
trainer = gluon.Trainer(
net.collect_params(), 'sgd',
{'learning_rate': args.lr, 'wd': args.wd, 'momentum': args.momentum},
update_on_kvstore=(False if args.amp else None))
if args.amp:
amp.init_trainer(trainer)
# lr decay policy
lr_decay = float(args.lr_decay)
lr_steps = sorted([float(ls) for ls in args.lr_decay_epoch.split(',') if ls.strip()])
mbox_loss = gcv.loss.SSDMultiBoxLoss()
ce_metric = mx.metric.Loss('CrossEntropy')
smoothl1_metric = mx.metric.Loss('SmoothL1')
# set up logger
logging.basicConfig()
logger = logging.getLogger()
logger.setLevel(logging.INFO)
log_file_path = args.save_prefix + '_train.log'
log_dir = os.path.dirname(log_file_path)
if log_dir and not os.path.exists(log_dir):
os.makedirs(log_dir)
fh = logging.FileHandler(log_file_path)
logger.addHandler(fh)
logger.info(args)
logger.info('Start training from [Epoch {}]'.format(args.start_epoch))
best_map = [0]
for epoch in range(args.start_epoch, args.epochs):
while lr_steps and epoch >= lr_steps[0]:
new_lr = trainer.learning_rate * lr_decay
lr_steps.pop(0)
trainer.set_learning_rate(new_lr)
logger.info("[Epoch {}] Set learning rate to {}".format(epoch, new_lr))
ce_metric.reset()
smoothl1_metric.reset()
tic = time.time()
btic = time.time()
net.hybridize(static_alloc=True, static_shape=True)
for i, batch in enumerate(train_data):
if args.dali:
# dali iterator returns a mxnet.io.DataBatch
data = [d.data[0] for d in batch]
box_targets = [d.label[0] for d in batch]
cls_targets = [nd.cast(d.label[1], dtype='float32') for d in batch]
else:
data = gluon.utils.split_and_load(batch[0], ctx_list=ctx, batch_axis=0)
cls_targets = gluon.utils.split_and_load(batch[1], ctx_list=ctx, batch_axis=0)
box_targets = gluon.utils.split_and_load(batch[2], ctx_list=ctx, batch_axis=0)
with autograd.record():
cls_preds = []
box_preds = []
for x in data:
cls_pred, box_pred, _ = net(x)
cls_preds.append(cls_pred)
box_preds.append(box_pred)
sum_loss, cls_loss, box_loss = mbox_loss(
cls_preds, box_preds, cls_targets, box_targets)
if args.amp:
with amp.scale_loss(sum_loss, trainer) as scaled_loss:
autograd.backward(scaled_loss)
else:
autograd.backward(sum_loss)
# since we have already normalized the loss, we don't want to normalize
# by batch-size anymore
trainer.step(1)
if (not args.horovod or hvd.rank() == 0):
local_batch_size = int(args.batch_size // (hvd.size() if args.horovod else 1))
ce_metric.update(0, [l * local_batch_size for l in cls_loss])
smoothl1_metric.update(0, [l * local_batch_size for l in box_loss])
if args.log_interval and not (i + 1) % args.log_interval:
name1, loss1 = ce_metric.get()
name2, loss2 = smoothl1_metric.get()
logger.info('[Epoch {}][Batch {}], Speed: {:.3f} samples/sec, {}={:.3f}, {}={:.3f}'.format(
epoch, i, args.batch_size/(time.time()-btic), name1, loss1, name2, loss2))
btic = time.time()
if (not args.horovod or hvd.rank() == 0):
name1, loss1 = ce_metric.get()
name2, loss2 = smoothl1_metric.get()
logger.info('[Epoch {}] Training cost: {:.3f}, {}={:.3f}, {}={:.3f}'.format(
epoch, (time.time()-tic), name1, loss1, name2, loss2))
if (epoch % args.val_interval == 0) or (args.save_interval and epoch % args.save_interval == 0):
# consider reduce the frequency of validation to save time
map_name, mean_ap = validate(net, val_data, ctx, eval_metric)
val_msg = '\n'.join(['{}={}'.format(k, v) for k, v in zip(map_name, mean_ap)])
logger.info('[Epoch {}] Validation: \n{}'.format(epoch, val_msg))
current_map = float(mean_ap[-1])
else:
current_map = 0.
save_params(net, best_map, current_map, epoch, args.save_interval, args.save_prefix)
if __name__ == '__main__':
args = parse_args()
if args.amp:
amp.init()
if args.horovod:
hvd.init()
# fix seed for mxnet, numpy and python builtin random generator.
gutils.random.seed(args.seed)
# training contexts
if args.horovod:
ctx = [mx.gpu(hvd.local_rank())]
else:
ctx = [mx.gpu(int(i)) for i in args.gpus.split(',') if i.strip()]
ctx = ctx if ctx else [mx.cpu()]
# network
net_name = '_'.join(('ssd', str(args.data_shape), args.network, args.dataset))
args.save_prefix += net_name
if args.syncbn and len(ctx) > 1:
net = get_model(net_name, pretrained_base=True, norm_layer=gluon.contrib.nn.SyncBatchNorm,
norm_kwargs={'num_devices': len(ctx)})
async_net = get_model(net_name, pretrained_base=False) # used by cpu worker
else:
net = get_model(net_name, pretrained_base=True, norm_layer=gluon.nn.BatchNorm)
async_net = net
if args.resume.strip():
net.load_parameters(args.resume.strip())
async_net.load_parameters(args.resume.strip())
else:
with warnings.catch_warnings(record=True) as w:
warnings.simplefilter("always")
net.initialize()
async_net.initialize()
# needed for net to be first gpu when using AMP
net.collect_params().reset_ctx(ctx[0])
# training data
if args.dali:
if not dali_found:
raise SystemExit("DALI not found, please check if you installed it correctly.")
devices = [int(i) for i in args.gpus.split(',') if i.strip()]
train_dataset, val_dataset, eval_metric = get_dali_dataset(args.dataset, devices, args)
train_data, val_data = get_dali_dataloader(
async_net, train_dataset, val_dataset, args.data_shape, args.batch_size, args.num_workers,
devices, ctx[0], args.horovod, args.seed)
else:
train_dataset, val_dataset, eval_metric = get_dataset(args.dataset, args)
batch_size = (args.batch_size // hvd.size()) if args.horovod else args.batch_size
train_data, val_data = get_dataloader(
async_net, train_dataset, val_dataset, args.data_shape, batch_size, args.num_workers, ctx[0])
# training
train(net, train_data, val_data, eval_metric, ctx, args)