-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathconfig.defaults.yaml
187 lines (185 loc) · 3.54 KB
/
config.defaults.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
wandb:
project: acai
# Get your W&B token at https://wandb.ai/authorize
token:
kowalski:
host: kowalski.caltech.edu
port: 443
protocol: https
token:
collections:
alerts: ZTF_alerts
fritz:
token:
protocol: https
host: fritz.science
features:
"20201130":
drb:
norm: 1
diffmaglim:
norm: 1
ra:
norm: 1
dec:
norm: 1
magpsf:
norm: 1
sigmapsf:
norm: 1
chipsf:
norm: 1
fwhm:
norm: 1
sky:
norm: 1
chinr:
norm: 1
sharpnr:
norm: 1
sgscore1:
norm: 1
distpsnr1:
norm: 1
sgscore2:
norm: 1
distpsnr2:
norm: 1
sgscore3:
norm: 1
distpsnr3:
norm: 1
ndethist:
norm: 1
ncovhist:
norm: 1
scorr:
norm: 1
nmtchps:
norm: 1
clrcoeff:
norm: 1
clrcounc:
norm: 1
neargaia:
norm: 1
neargaiabright:
norm: 1
models:
acai_h:
# value of label should refer to dataset.dN.csv
label: "h"
# value should refer to features section of this config
features: "20201130"
parameters:
threshold: 0.5
# balance ratio for the prevalent class. leave null to use all available data
balance: 2.5
# balance: 1.1
weight_per_class: false
class_weight:
0: 1
1: 1
scale_features: "min_max"
test_size: 0.1
val_size: 0.1
random_state: 42
batch_size: 32
shuffle_buffer_size: 128
epochs: 100
features_input_shape:
- 25
triplet_shape:
- 63
- 63
- 3
dense_blocks: 2
dense_block_units: 64
dense_block_scale_factor: 0.5
dense_activation: "relu"
dense_dropout_rate: 0.25
conv_blocks: 2
conv_conv_layer_type: "SeparableConv2D"
conv_pool_layer_type: "MaxPooling2D"
conv_block_filters: 16
conv_block_filter_size:
- 3
- 3
conv_block_pool_size:
- 2
- 2
conv_block_scale_factor: 2
conv_dropout_rate: 0.25
head_blocks: 1
head_block_units: 16
head_block_scale_factor: 0.5
head_activation: "relu"
head_dropout_rate: 0
loss: "binary_crossentropy"
optimizer: "adam"
learning_rate: 3e-4
momentum: 0.9
monitor: "val_loss"
patience: 5
callbacks:
- "reduce_lr_on_plateau"
- "early_stopping"
save: false
sweep:
# refer to https://docs.wandb.ai/guides/sweeps
metric:
name: "val_loss"
goal: "minimize"
method: "grid"
parameters:
balance:
value: 2.5
epochs:
value: 100
patience:
value: 10
threshold:
value: 0.5
dense_block_units:
values:
- 64
- 128
- 256
conv_block_filters:
values:
- 16
- 32
- 64
head_block_units:
values:
- 16
- 32
- 64
acai_b:
label: "b"
features: "20201130"
parameters:
balance: 2.5
# balance: 1.1
weight_per_class: false
acai_o:
label: "o"
features: "20201130"
parameters:
balance: 2.5
# balance: 1.1
weight_per_class: false
acai_n:
label: "n"
features: "20201130"
parameters:
balance: 2.5
# balance: 1.1
weight_per_class: false
acai_v:
label: "v"
features: "20201130"
parameters:
balance: 2.5
# balance: 1.1
weight_per_class: false