We use a monocular depth estimation from [ MiDaS/DPT ]. This is provided as a submodule in tools/DPT
.
1.1 Get the source code, apply modifications and download weights
git submodule update --init --recursive
pushd tools/DPT
git apply ../patches/midas_f43ef9e.patch
popd
Download the pretrained weights from [ here ] and copy the .pt
file to tools/DPT/weights/
.
1.2 Test
# This code should work with our standard environment
conda activate multi-human-mocap
pushd tools/DPT
inputpath="../../data/mupots-3d-eval/TS1/images"
outputpath="../../output/Test_TS1_DPT_large_monodepth"
python run_monodepth.py \
--input_path $inputpath \
--output_path $outputpath \
--model_type dpt_large
popd
The predicted depth maps should appear in the output folder as img_000000.png, ...
.
We use [ AlphaPose ] for predicting 2D poses and tracking. This is provided as a submodule in tools/AlphaPose
.
2.1 Get the source code, apply modifications and download weights
git submodule update --init --recursive
pushd tools/AlphaPose
git apply ../patches/alphapose_d97acd0.patch
popd
- Download the pretrained [ Fast Pose ] model and copy it to
pretrained_models/fast_res50_256x192.pth
. - Download the wrights for [ YOLOv3 ] detectors and copy the file to
detector/yolo/data/yolov3-spp.weights
. - Download the [ Human-ReID tracker ] weights and copy the file to
tools/AlphaPose/trackers/weights/osnet_ain_x1_0_msmt17_256x128_amsgrad_ep50_lr0.0015_coslr_b64_fb10_softmax_labsmth_flip_jitter.pth
.
2.2 Install AlphaPose Conda environment
Please follow the instructions to install a Conda environment from [ here ].
Important: keep a separated Conda environment alphapose
for this tool.
2.3 Test
conda activate alphapose
pushd tools/AlphaPose
inputpath="../../data/mupots-3d-eval/TS1/images"
outputpath="../../output/Test_TS1_AlphaPose"
python3 scripts/demo_inference.py \
--cfg configs/coco/resnet/256x192_res50_lr1e-3_1x.yaml \
--checkpoint pretrained_models/fast_res50_256x192.pth \
--indir ${inputpath} \
--outdir ${outputpath} \
--pose_track
popd
Predictions should be stored in output/Test_TS1_AlphaPose/alphapose-results.json
.
We use [ ROMP ] for SMPL parameters prediction. This is provided as a submodule in tools/ROMP
.
3.1 Get the source code, apply modifications and download weights
git submodule update --init --recursive
conda activate multi-human-mocap
pushd tools/ROMP
git apply ../patches/romp_f5b87be.patch
pushd simple_romp
python setup.py install
popd
popd
3.2 Test
# This code should work with our standard environment
conda activate multi-human-mocap
pushd tools/ROMP
inputpath="../../data/mupots-3d-eval/TS1/images"
outputpath="../../output/Test_TS1_ROMP"
romp --mode=video --calc_smpl \
-i=${inputpath} \
-o=${outputpath}
popd
Predictions should be stored in output/Test_TS1_ROMP/img_000000.npz, ...
.
We use [ Mask2Former ] for instance segmentation. This is provided as a submodule in tools/Mask2Former
.
4.1 Get the source code
git submodule update --init --recursive
pushd tools/Mask2Former
git apply ../patches/mask2former_16c3bee.patch
popd
Please follow the instructions to install a Conda environment from [ here ].
Important: keep a separated Conda environment mask2former
for this tool.
4.2 Test
conda activate mask2former
pushd tools/Mask2Former
inputpath="../../data/mupots-3d-eval/TS1/images"
outputpath="../../output/Test_TS1_Mask2Former"
python run_instance_segmentation.py \
--input ${inputpath} \
--output ${outputpath}
popd
Predictions should be stored in output/Test_TS1_Mask2Former/img_000000.png, ...
.