-
Notifications
You must be signed in to change notification settings - Fork 22
/
meanShift.py
44 lines (38 loc) · 1.5 KB
/
meanShift.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
import cv2 as cv
import numpy as np
def meanShift():
cap = cv.VideoCapture('./img/slow_traffic_small.mp4')
# take first frame of the video
ret, frame = cap.read()
# setup initial location of window
x, y, width, height = 300, 200, 100, 50
track_window = (x, y, width, height)
# set up the ROI for tracking
roi = frame[y:y+height, x:x+width]
hsv_roi = cv.cvtColor(roi, cv.COLOR_BGR2HSV)
mask = cv.inRange(hsv_roi, np.array((0., 60., 32.)),
np.array((180., 255., 255)))
roi_hist = cv.calcHist([hsv_roi], [0], mask, [180], [0, 180])
cv.normalize(roi_hist, roi_hist, 0, 255, cv.NORM_MINMAX)
# Setup the termination criteria, either 10 iterations or move by atleast 1 pt
term_crit = (cv.TERM_CRITERIA_EPS | cv.TERM_CRITERIA_COUNT, 10, 1)
while True:
ret, frame = cap.read()
if ret:
hsv = cv.cvtColor(frame, cv.COLOR_BGR2HSV)
dst = cv.calcBackProject([hsv], [0], roi_hist, [0, 180], 1)
# Apply meanshift to get the new location.
ret, track_window = cv.meanShift(dst, track_window, term_crit)
# Draw it on the image
x, y, w, h = track_window
final_image = cv.rectangle(
frame, (x, y), (x+w, y+h), (0, 255, 0), 3)
cv.imshow("Frame", final_image)
k = cv.waitKey(30) & 0xFF
if k == ord('q'):
break
else:
break
cap.release()
cv.destroyAllWindows()
meanShift()