-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathkeras_pure_model.py
185 lines (145 loc) · 6.47 KB
/
keras_pure_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
import pandas as pd
import matplotlib.pyplot as plt
from sklearn import preprocessing
from sklearn.model_selection import train_test_split
from keras.models import Sequential
from keras.layers import Dense, Dropout, BatchNormalization
from keras import optimizers
from dataset import *
def process(df):
df['pickup_longitude_binned'] = pd.qcut(df['pickup_longitude'], 16, labels=False)
df['dropoff_longitude_binned'] = pd.qcut(df['dropoff_longitude'], 16, labels=False)
df['pickup_latitude_binned'] = pd.qcut(df['pickup_latitude'], 16, labels=False)
df['dropoff_latitude_binned'] = pd.qcut(df['dropoff_latitude'], 16, labels=False)
df = df.drop('pickup_datetime', axis=1)
return df
def manhattan(pickup_lat, pickup_long, dropoff_lat, dropoff_long):
return np.abs(dropoff_lat - pickup_lat) + np.abs(dropoff_long - pickup_long)
def add_relevant_distances(df):
# Add airpot distances and downtown
ny = (-74.0063889, 40.7141667)
jfk = (-73.7822222222, 40.6441666667)
ewr = (-74.175, 40.69)
lgr = (-73.87, 40.77)
df['downtown_pickup_distance'] = manhattan(ny[1], ny[0], df['pickup_latitude'], df['pickup_longitude'])
df['downtown_dropoff_distance'] = manhattan(ny[1], ny[0], df['dropoff_latitude'], df['dropoff_longitude'])
df['jfk_pickup_distance'] = manhattan(jfk[1], jfk[0], df['pickup_latitude'], df['pickup_longitude'])
df['jfk_dropoff_distance'] = manhattan(jfk[1], jfk[0], df['dropoff_latitude'], df['dropoff_longitude'])
df['ewr_pickup_distance'] = manhattan(ewr[1], ewr[0], df['pickup_latitude'], df['pickup_longitude'])
df['ewr_dropoff_distance'] = manhattan(ewr[1], ewr[0], df['dropoff_latitude'], df['dropoff_longitude'])
df['lgr_pickup_distance'] = manhattan(lgr[1], lgr[0], df['pickup_latitude'], df['pickup_longitude'])
df['lgr_dropoff_distance'] = manhattan(lgr[1], lgr[0], df['dropoff_latitude'], df['dropoff_longitude'])
return df
def add_engineered(df):
lat1 = df['pickup_latitude']
lat2 = df['dropoff_latitude']
lon1 = df['pickup_longitude']
lon2 = df['dropoff_longitude']
weekday = df['weekday']
hour = df['hour']
latdiff = (lat1 - lat2)
londiff = (lon1 - lon2)
euclidean = (latdiff ** 2 + londiff ** 2) ** 0.5
ploc = lat1 * lon1
dloc = lat2 * lon2
# Add new features
df['latdiff'] = latdiff
df['londiff'] = londiff
df['euclidean'] = euclidean
df['manhattan'] = manhattan(lat1, lon1, lat2, lon2)
# One-hot encoding columns
# Note, this is note the best way to one-hot encode features, but probably the simplest and will work here
df = pd.get_dummies(df, columns=['weekday'])
df = pd.get_dummies(df, columns=['month'])
return df
def output_submission(raw_test, prediction, id_column, prediction_column, file_name):
df = pd.DataFrame(prediction, columns=[prediction_column])
df[id_column] = raw_test[id_column]
df[[id_column, prediction_column]].to_csv((file_name), index=False)
print('Output complete')
def plot_loss_accuracy(history):
plt.figure(figsize=(20, 10))
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.title('model loss')
plt.ylabel('loss')
plt.xlabel('epoch')
plt.legend(['train', 'test'], loc='upper right')
plt.show()
# Parameters
TRAIN_PATH = 'data/tf_train.csv'
VALIDATION_PATH = 'data/tf_validation.csv'
TEST_PATH = 'data/test_processed.csv'
SUBMISSION_NAME = 'submissions/keras_submission.csv'
# Model parameters
BATCH_SIZE = 256
EPOCHS = 50
LEARNING_RATE = 0.0001
DATASET_SIZE = 2000000
# Load values in a more compact form
data_types = {'key': 'str',
'fare_amount': 'float32',
'pickup_datetime': 'str',
'pickup_longitude': 'float32',
'pickup_latitude': 'float32',
'dropoff_longitude': 'float32',
'dropoff_latitude': 'float32',
'passenger_count': 'uint8',
'year': 'uint8',
'month': 'uint8',
'day': 'uint8',
'hour': 'uint8',
'weekday': 'uint8',
'night': 'uint8',
'late_night': 'uint8'}
data_names = ['key', 'fare_amount', 'pickup_datetime', 'pickup_longitude', 'pickup_latitude', 'dropoff_longitude', 'dropoff_latitude',
'passenger_count', 'year', 'month', 'day', 'hour', 'weekday', 'night', 'late_night']
train = pd.read_csv(TRAIN_PATH, nrows=DATASET_SIZE, dtype=data_types, usecols=[1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14], names=data_names)
test = pd.read_csv(TEST_PATH, usecols=[0, 1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13])
# process data
train = process(train)
test = process(test)
# process data
train = add_relevant_distances(train)
test = add_relevant_distances(test)
train = add_engineered(train)
test = add_engineered(test)
# Drop unwanted columns
dropped_columns = ['pickup_longitude', 'pickup_latitude',
'dropoff_longitude', 'dropoff_latitude']
train_clean = train.drop(dropped_columns, axis=1)
test_clean = test.drop(dropped_columns + ['key'], axis=1)
# split data in train and validation (90% ~ 10%)
train_df, validation_df = train_test_split(train_clean, test_size=0.10, random_state=1)
# Get labels
train_labels = train_df['fare_amount'].values
validation_labels = validation_df['fare_amount'].values
train_df = train_df.drop(['fare_amount'], axis=1)
validation_df = validation_df.drop(['fare_amount'], axis=1)
# Scale data
scaler = preprocessing.MinMaxScaler()
train_df_scaled = scaler.fit_transform(train_df)
validation_df_scaled = scaler.transform(validation_df)
test_scaled = scaler.transform(test_clean)
model = Sequential()
model.add(Dense(256, activation='relu', input_dim=train_df_scaled.shape[1]))
model.add(BatchNormalization())
model.add(Dense(128, activation='relu'))
model.add(BatchNormalization())
model.add(Dense(64, activation='relu'))
model.add(BatchNormalization())
model.add(Dense(32, activation='relu'))
model.add(BatchNormalization())
model.add(Dense(16, activation='relu'))
model.add(BatchNormalization())
model.add(Dense(1))
adam = optimizers.adam(lr=LEARNING_RATE)
model.compile(loss='mse', optimizer=adam, metrics=['mae'])
history = model.fit(x=train_df_scaled, y=train_labels, batch_size=BATCH_SIZE, epochs=EPOCHS,
verbose=2, validation_data=(validation_df_scaled, validation_labels),
shuffle=True)
# Make prediction
prediction = model.predict(test_scaled, batch_size=128, verbose=1)
# output prediction
output_submission(test, prediction, 'key', 'fare_amount', SUBMISSION_NAME)
plot_loss_accuracy(history)