Skip to content

Latest commit

 

History

History
142 lines (114 loc) · 3.89 KB

README.md

File metadata and controls

142 lines (114 loc) · 3.89 KB

Step 1: Environment Setup 1.Clone the repository:

git clone https://github.com/diazmanne/e2e-mlflow-dvc.git
cd e2e-mlflow-dvc

2.Create a Conda environment:

conda create -n e2e-mlflow-dvc python=3.9 -y

3.Activate the environment:

conda activate e2e-mlflow-dvc

4.Install dependencies:

pip install -r requirements.txt

Step 2 : Enables easy logging using the logger # [2025-01-21 10:15:30,123: INFO: my_module: This is an example log message] #Logs directory is going to be created /home/lab/Workspace/e2e-mlflow-dvc/log/running_logs.log

# make a main.py
    from cnnClassifier import logger

    logger.info("This is an INFO log for testing.")

# run python3 main.py to test  

Step 3 : config.yaml 0 artifacts_root: artifacts

    data_ingestion:
    root_dir: artifacts/data_ingestion
    source_URL:"insert google drive share link"
    local_data_file: artifacts/data_ingestion/data.zip
    unzip_dir: artifacts/data_ingestion

Step 4 : Create utils functions

Create common.py on ~/Workspace/e2e-mlflow-dvc/src/
cnnClassifier/utils

Step 5 : 1.Create a Jupiter Notebook on /Workspace/e2e-mlflowdvc/research 01_data_ingestion.ipynb make a dir constant and then create init.py with Path

here is my project structure / ├── artifacts/ │   ├── data_ingestion/ │   │   ├── Chest-CT-Scan-data/ │   │   └── Chest-CT-Scan-data.zip │   ├── prepare_base_model/ │   │   ├── base_model.h5 │   │   └── base_model_updated.h5 │   └── training/ │   └── trained_model.keras ├── config/ │   └── config.yaml ├── .github/ │   └── workflows/ │   └── .gitkeep ├── logs/ │   └── running_logs.log ├── research/ │   ├── .ipynb_checkpoints/ │   │   ├── 01_data_ingestion-checkpoint.ipynb │   │   ├── 02_prepare_base_model-checkpoint.ipynb │   │   ├── 03_model_trainer-checkpoint.ipynb │   │   ├── 03_moel_trainer-checkpoint.ipynb │   │   ├── 04_model_evaluation-checkpoint.ipynb │   │   ├── trails-checkpoint │   │   └── trails-checkpoint.ipynb │   ├── logs/ │   │   ├── running_logs_2025-01-20_16-49-54.log │   │   ├── running_logs_2025-01-20_19-33-29.log │   │   └── running_logs.log │   ├── 01_data_ingestion.ipynb │   ├── 02_prepare_base_model.ipynb │   ├── 03_model_trainer.ipynb │   ├── 04_model_evaluation.ipynb │   └── trails.ipynb ├── src/ │   └── cnnClassifier ├── components │   ├── data_ingestion.py │   ├── init.py │   ├── model_evaluation_mlflow.py │   ├── model_trainer.py │   └── prepare_base_model.py ├── config │   ├── configuration_0.py │   ├── configuration.py │   └── init.py ├── constants │   └── init.py ├── entity │   ├── config_entity.py │   └── init.py ├── init.py ├── pipeline │   ├── init.py │   ├── stage_01_data_ingestion.py │   ├── stage_02_prepare_base_model.py │   ├── stage_03_model_trainer.py │   └── stage_04_model_evaluation.py └── utils ├── common.py └── init.py├── templates/ │   └── index.html ├── .dvcignore ├── dvc.yaml ├── .gitignore ├── main.py ├── params.yaml ├── params.yaml.dvc ├── README.md ├── .README.md.swp ├── requirements.txt ├── scores.json ├── setup.py └── template.py

app

http://127.0.0.1:8080/train http://127.0.0.1:8080

ECR 299819601507.dkr.ecr.us-east-2.amazonaws.com/chestdetect