-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathencoder_model.py
110 lines (98 loc) · 4.03 KB
/
encoder_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
import numpy as np
import pandas as pd
import torch
from torch import nn
# %%
RNG_SEED = 42
torch.manual_seed(RNG_SEED)
np.random.seed(RNG_SEED)
data_type_torch = torch.float32
device = torch.device("cuda")
# %%
class Embedder(nn.Module):
def __init__(self,
d_model,
compute_device=device):
super().__init__()
self.d_model = d_model
self.compute_device = compute_device
elem_dir = 'data/element_properties'
# Choose what element information the model receives
mat2vec = f'{elem_dir}/mat2vec.csv' # element embedding
cbfv = pd.read_csv(mat2vec, index_col=0).values
feat_size = cbfv.shape[-1]
self.fc_mat2vec = nn.Linear(feat_size, d_model).to(self.compute_device)
zeros = np.zeros((1, feat_size))
cat_array = np.concatenate([zeros, cbfv])
cat_array = torch.as_tensor(cat_array, dtype=data_type_torch)
self.cbfv = nn.Embedding.from_pretrained(cat_array) \
.to(self.compute_device, dtype=data_type_torch)
def forward(self, src):
mat2vec_emb = self.cbfv(src)
x_emb = self.fc_mat2vec(mat2vec_emb)
return x_emb
# %%
class FractionalEncoder(nn.Module):
def __init__(self,
d_model,
resolution=100,
log10=False,
):
super().__init__()
self.d_model = d_model//2
self.resolution = resolution
self.log10 = log10
x = torch.linspace(0, self.resolution - 1,
self.resolution,
requires_grad=False) \
.view(self.resolution, 1)
fraction = torch.linspace(0, self.d_model - 1,
self.d_model,
requires_grad=False) \
.view(1, self.d_model).repeat(self.resolution, 1)
pe = torch.zeros(self.resolution, self.d_model) # [5000, 512]
pe[:, 0::2] = torch.sin(x /torch.pow(
50,2 * fraction[:, 0::2] / self.d_model))
pe[:, 1::2] = torch.cos(x / torch.pow(
50, 2 * fraction[:, 1::2] / self.d_model))
pe = self.register_buffer('pe', pe)
def forward(self, x):
x = x.clone()
if self.log10:
x = 0.0025 * (torch.log2(x))**2
# clamp x[x > 1] = 1
x = torch.clamp(x, max=1)
# x = 1 - x # for sinusoidal encoding at x=0
# clamp x[x < 1/self.resolution] = 1/self.resolution
x = torch.clamp(x, min=1/self.resolution)
# 返回一个新张量,将输入input张量的每个元素舍入到最近的整数。
frac_idx = torch.round(x * (self.resolution)).to(dtype=torch.long) - 1
out = self.pe[frac_idx]
return out
# %%
class Encoder(nn.Module):
def __init__(self,
d_model=512,
frac=False,
compute_device=device):
super().__init__()
self.d_model = d_model
self.fractional = frac
self.compute_device = compute_device
self.embed = Embedder(d_model=self.d_model,
compute_device=self.compute_device)
self.pe = FractionalEncoder(self.d_model, resolution=5000, log10=False).to(self.compute_device)
self.ple = FractionalEncoder(self.d_model, resolution=5000, log10=True).to(self.compute_device)
self.emb_scaler = nn.parameter.Parameter(torch.tensor([1.])).to(self.compute_device)
self.pos_scaler = nn.parameter.Parameter(torch.tensor([1.])).to(self.compute_device)
self.pos_scaler_log = nn.parameter.Parameter(torch.tensor([1.])).to(self.compute_device)
def forward(self, src, frac):
x = self.embed(src) * 2**self.emb_scaler
pe = torch.zeros_like(x)
ple = torch.zeros_like(x)
pe_scaler = 2**(1-self.pos_scaler)**2
ple_scaler = 2**(1-self.pos_scaler_log)**2
pe[:, :, :self.d_model//2] = self.pe(frac) * pe_scaler
ple[:, :, self.d_model//2:] = self.ple(frac) * ple_scaler
x_src = x + pe + ple
return x_src