-
Notifications
You must be signed in to change notification settings - Fork 373
/
cache.go
529 lines (485 loc) · 15.1 KB
/
cache.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
/*
* Copyright 2019 Dgraph Labs, Inc. and Contributors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// Ristretto is a fast, fixed size, in-memory cache with a dual focus on
// throughput and hit ratio performance. You can easily add Ristretto to an
// existing system and keep the most valuable data where you need it.
package ristretto
import (
"bytes"
"errors"
"fmt"
"sync/atomic"
"time"
"github.com/dgraph-io/ristretto/z"
)
const (
// TODO: find the optimal value for this or make it configurable
setBufSize = 32 * 1024
)
type onEvictFunc func(uint64, uint64, interface{}, int64)
// Cache is a thread-safe implementation of a hashmap with a TinyLFU admission
// policy and a Sampled LFU eviction policy. You can use the same Cache instance
// from as many goroutines as you want.
type Cache struct {
// store is the central concurrent hashmap where key-value items are stored.
store store
// policy determines what gets let in to the cache and what gets kicked out.
policy policy
// getBuf is a custom ring buffer implementation that gets pushed to when
// keys are read.
getBuf *ringBuffer
// setBuf is a buffer allowing us to batch/drop Sets during times of high
// contention.
setBuf chan *item
// onEvict is called for item evictions.
onEvict onEvictFunc
// KeyToHash function is used to customize the key hashing algorithm.
// Each key will be hashed using the provided function. If keyToHash value
// is not set, the default keyToHash function is used.
keyToHash func(interface{}) (uint64, uint64)
// stop is used to stop the processItems goroutine.
stop chan struct{}
// cost calculates cost from a value.
cost func(value interface{}) int64
// cleanupTicker is used to periodically check for entries whose TTL has passed.
cleanupTicker *time.Ticker
// Metrics contains a running log of important statistics like hits, misses,
// and dropped items.
Metrics *Metrics
}
// Config is passed to NewCache for creating new Cache instances.
type Config struct {
// NumCounters determines the number of counters (keys) to keep that hold
// access frequency information. It's generally a good idea to have more
// counters than the max cache capacity, as this will improve eviction
// accuracy and subsequent hit ratios.
//
// For example, if you expect your cache to hold 1,000,000 items when full,
// NumCounters should be 10,000,000 (10x). Each counter takes up 4 bits, so
// keeping 10,000,000 counters would require 5MB of memory.
NumCounters int64
// MaxCost can be considered as the cache capacity, in whatever units you
// choose to use.
//
// For example, if you want the cache to have a max capacity of 100MB, you
// would set MaxCost to 100,000,000 and pass an item's number of bytes as
// the `cost` parameter for calls to Set. If new items are accepted, the
// eviction process will take care of making room for the new item and not
// overflowing the MaxCost value.
MaxCost int64
// BufferItems determines the size of Get buffers.
//
// Unless you have a rare use case, using `64` as the BufferItems value
// results in good performance.
BufferItems int64
// Metrics determines whether cache statistics are kept during the cache's
// lifetime. There *is* some overhead to keeping statistics, so you should
// only set this flag to true when testing or throughput performance isn't a
// major factor.
Metrics bool
// OnEvict is called for every eviction and passes the hashed key, value,
// and cost to the function.
OnEvict func(key, conflict uint64, value interface{}, cost int64)
// KeyToHash function is used to customize the key hashing algorithm.
// Each key will be hashed using the provided function. If keyToHash value
// is not set, the default keyToHash function is used.
KeyToHash func(key interface{}) (uint64, uint64)
// Cost evaluates a value and outputs a corresponding cost. This function
// is ran after Set is called for a new item or an item update with a cost
// param of 0.
Cost func(value interface{}) int64
}
type itemFlag byte
const (
itemNew itemFlag = iota
itemDelete
itemUpdate
)
// item is passed to setBuf so items can eventually be added to the cache.
type item struct {
flag itemFlag
key uint64
conflict uint64
value interface{}
cost int64
expiration time.Time
}
// NewCache returns a new Cache instance and any configuration errors, if any.
func NewCache(config *Config) (*Cache, error) {
switch {
case config.NumCounters == 0:
return nil, errors.New("NumCounters can't be zero")
case config.MaxCost == 0:
return nil, errors.New("MaxCost can't be zero")
case config.BufferItems == 0:
return nil, errors.New("BufferItems can't be zero")
}
policy := newPolicy(config.NumCounters, config.MaxCost)
cache := &Cache{
store: newStore(newExpirationMap()),
policy: policy,
getBuf: newRingBuffer(policy, config.BufferItems),
setBuf: make(chan *item, setBufSize),
onEvict: config.OnEvict,
keyToHash: config.KeyToHash,
stop: make(chan struct{}),
cost: config.Cost,
cleanupTicker: time.NewTicker(bucketSize),
}
if cache.keyToHash == nil {
cache.keyToHash = z.KeyToHash
}
if config.Metrics {
cache.collectMetrics()
}
// NOTE: benchmarks seem to show that performance decreases the more
// goroutines we have running cache.processItems(), so 1 should
// usually be sufficient
go cache.processItems()
return cache, nil
}
// Get returns the value (if any) and a boolean representing whether the
// value was found or not. The value can be nil and the boolean can be true at
// the same time.
func (c *Cache) Get(key interface{}) (interface{}, bool) {
if c == nil || key == nil {
return nil, false
}
keyHash, conflictHash := c.keyToHash(key)
c.getBuf.Push(keyHash)
value, ok := c.store.Get(keyHash, conflictHash)
if ok {
c.Metrics.add(hit, keyHash, 1)
} else {
c.Metrics.add(miss, keyHash, 1)
}
return value, ok
}
// Set attempts to add the key-value item to the cache. If it returns false,
// then the Set was dropped and the key-value item isn't added to the cache. If
// it returns true, there's still a chance it could be dropped by the policy if
// its determined that the key-value item isn't worth keeping, but otherwise the
// item will be added and other items will be evicted in order to make room.
//
// To dynamically evaluate the items cost using the Config.Coster function, set
// the cost parameter to 0 and Coster will be ran when needed in order to find
// the items true cost.
func (c *Cache) Set(key, value interface{}, cost int64) bool {
return c.SetWithTTL(key, value, cost, 0*time.Second)
}
// SetWithTTL works like Set but adds a key-value pair to the cache that will expire
// after the specified TTL (time to live) has passed. A zero value means the value never
// exexpire, which is identical to calling Set. A negative value is a no-op and the value
// is discarded.
func (c *Cache) SetWithTTL(key, value interface{}, cost int64, ttl time.Duration) bool {
if c == nil || key == nil {
return false
}
var expiration time.Time
switch {
case ttl == 0:
// No expiration.
break
case ttl < 0:
// Treat this a a no-op.
return false
default:
expiration = time.Now().Add(ttl)
}
keyHash, conflictHash := c.keyToHash(key)
i := &item{
flag: itemNew,
key: keyHash,
conflict: conflictHash,
value: value,
cost: cost,
expiration: expiration,
}
// cost is eventually updated. The expiration must also be immediately updated
// to prevent items from being prematurely removed from the map.
if c.store.Update(i) {
i.flag = itemUpdate
}
// Attempt to send item to policy.
select {
case c.setBuf <- i:
return true
default:
c.Metrics.add(dropSets, keyHash, 1)
return false
}
}
// Del deletes the key-value item from the cache if it exists.
func (c *Cache) Del(key interface{}) {
if c == nil || key == nil {
return
}
keyHash, conflictHash := c.keyToHash(key)
// Delete immediately.
c.store.Del(keyHash, conflictHash)
// If we've set an item, it would be applied slightly later.
// So we must push the same item to `setBuf` with the deletion flag.
// This ensures that if a set is followed by a delete, it will be
// applied in the correct order.
c.setBuf <- &item{
flag: itemDelete,
key: keyHash,
conflict: conflictHash,
}
}
// Close stops all goroutines and closes all channels.
func (c *Cache) Close() {
if c == nil || c.stop == nil {
return
}
// Block until processItems goroutine is returned.
c.stop <- struct{}{}
close(c.stop)
c.stop = nil
close(c.setBuf)
c.policy.Close()
}
// Clear empties the hashmap and zeroes all policy counters. Note that this is
// not an atomic operation (but that shouldn't be a problem as it's assumed that
// Set/Get calls won't be occurring until after this).
func (c *Cache) Clear() {
if c == nil {
return
}
// Block until processItems goroutine is returned.
c.stop <- struct{}{}
// Swap out the setBuf channel.
c.setBuf = make(chan *item, setBufSize)
// Clear value hashmap and policy data.
c.policy.Clear()
c.store.Clear()
// Only reset metrics if they're enabled.
if c.Metrics != nil {
c.Metrics.Clear()
}
// Restart processItems goroutine.
go c.processItems()
}
// processItems is ran by goroutines processing the Set buffer.
func (c *Cache) processItems() {
for {
select {
case i := <-c.setBuf:
// Calculate item cost value if new or update.
if i.cost == 0 && c.cost != nil && i.flag != itemDelete {
i.cost = c.cost(i.value)
}
switch i.flag {
case itemNew:
victims, added := c.policy.Add(i.key, i.cost)
if added {
c.store.Set(i)
c.Metrics.add(keyAdd, i.key, 1)
}
for _, victim := range victims {
victim.conflict, victim.value = c.store.Del(victim.key, 0)
if c.onEvict != nil {
c.onEvict(victim.key, victim.conflict, victim.value, victim.cost)
}
}
case itemUpdate:
c.policy.Update(i.key, i.cost)
case itemDelete:
c.policy.Del(i.key) // Deals with metrics updates.
c.store.Del(i.key, i.conflict)
}
case <-c.cleanupTicker.C:
c.store.Cleanup(c.policy, c.onEvict)
case <-c.stop:
return
}
}
}
// collectMetrics just creates a new *Metrics instance and adds the pointers
// to the cache and policy instances.
func (c *Cache) collectMetrics() {
c.Metrics = newMetrics()
c.policy.CollectMetrics(c.Metrics)
}
type metricType int
const (
// The following 2 keep track of hits and misses.
hit = iota
miss
// The following 3 keep track of number of keys added, updated and evicted.
keyAdd
keyUpdate
keyEvict
// The following 2 keep track of cost of keys added and evicted.
costAdd
costEvict
// The following keep track of how many sets were dropped or rejected later.
dropSets
rejectSets
// The following 2 keep track of how many gets were kept and dropped on the
// floor.
dropGets
keepGets
// This should be the final enum. Other enums should be set before this.
doNotUse
)
func stringFor(t metricType) string {
switch t {
case hit:
return "hit"
case miss:
return "miss"
case keyAdd:
return "keys-added"
case keyUpdate:
return "keys-updated"
case keyEvict:
return "keys-evicted"
case costAdd:
return "cost-added"
case costEvict:
return "cost-evicted"
case dropSets:
return "sets-dropped"
case rejectSets:
return "sets-rejected" // by policy.
case dropGets:
return "gets-dropped"
case keepGets:
return "gets-kept"
default:
return "unidentified"
}
}
// Metrics is a snapshot of performance statistics for the lifetime of a cache instance.
type Metrics struct {
all [doNotUse][]*uint64
}
func newMetrics() *Metrics {
s := &Metrics{}
for i := 0; i < doNotUse; i++ {
s.all[i] = make([]*uint64, 256)
slice := s.all[i]
for j := range slice {
slice[j] = new(uint64)
}
}
return s
}
func (p *Metrics) add(t metricType, hash, delta uint64) {
if p == nil {
return
}
valp := p.all[t]
// Avoid false sharing by padding at least 64 bytes of space between two
// atomic counters which would be incremented.
idx := (hash % 25) * 10
atomic.AddUint64(valp[idx], delta)
}
func (p *Metrics) get(t metricType) uint64 {
if p == nil {
return 0
}
valp := p.all[t]
var total uint64
for i := range valp {
total += atomic.LoadUint64(valp[i])
}
return total
}
// Hits is the number of Get calls where a value was found for the corresponding key.
func (p *Metrics) Hits() uint64 {
return p.get(hit)
}
// Misses is the number of Get calls where a value was not found for the corresponding key.
func (p *Metrics) Misses() uint64 {
return p.get(miss)
}
// KeysAdded is the total number of Set calls where a new key-value item was added.
func (p *Metrics) KeysAdded() uint64 {
return p.get(keyAdd)
}
// KeysUpdated is the total number of Set calls where the value was updated.
func (p *Metrics) KeysUpdated() uint64 {
return p.get(keyUpdate)
}
// KeysEvicted is the total number of keys evicted.
func (p *Metrics) KeysEvicted() uint64 {
return p.get(keyEvict)
}
// CostAdded is the sum of costs that have been added (successful Set calls).
func (p *Metrics) CostAdded() uint64 {
return p.get(costAdd)
}
// CostEvicted is the sum of all costs that have been evicted.
func (p *Metrics) CostEvicted() uint64 {
return p.get(costEvict)
}
// SetsDropped is the number of Set calls that don't make it into internal
// buffers (due to contention or some other reason).
func (p *Metrics) SetsDropped() uint64 {
return p.get(dropSets)
}
// SetsRejected is the number of Set calls rejected by the policy (TinyLFU).
func (p *Metrics) SetsRejected() uint64 {
return p.get(rejectSets)
}
// GetsDropped is the number of Get counter increments that are dropped
// internally.
func (p *Metrics) GetsDropped() uint64 {
return p.get(dropGets)
}
// GetsKept is the number of Get counter increments that are kept.
func (p *Metrics) GetsKept() uint64 {
return p.get(keepGets)
}
// Ratio is the number of Hits over all accesses (Hits + Misses). This is the
// percentage of successful Get calls.
func (p *Metrics) Ratio() float64 {
if p == nil {
return 0.0
}
hits, misses := p.get(hit), p.get(miss)
if hits == 0 && misses == 0 {
return 0.0
}
return float64(hits) / float64(hits+misses)
}
// Clear resets all the metrics.
func (p *Metrics) Clear() {
if p == nil {
return
}
for i := 0; i < doNotUse; i++ {
for j := range p.all[i] {
atomic.StoreUint64(p.all[i][j], 0)
}
}
}
// String returns a string representation of the metrics.
func (p *Metrics) String() string {
if p == nil {
return ""
}
var buf bytes.Buffer
for i := 0; i < doNotUse; i++ {
t := metricType(i)
fmt.Fprintf(&buf, "%s: %d ", stringFor(t), p.get(t))
}
fmt.Fprintf(&buf, "gets-total: %d ", p.get(hit)+p.get(miss))
fmt.Fprintf(&buf, "hit-ratio: %.2f", p.Ratio())
return buf.String()
}