-
Notifications
You must be signed in to change notification settings - Fork 1.5k
/
Copy pathkeys.go
670 lines (585 loc) · 19.6 KB
/
keys.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
/*
* Copyright 2016-2018 Dgraph Labs, Inc. and Contributors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package x
import (
"encoding/binary"
"math"
"strings"
"github.com/pkg/errors"
"github.com/dgraph-io/dgraph/protos/pb"
)
const (
// TODO(pawan) - Make this 2 bytes long. Right now ParsedKey has ByteType and
// bytePrefix. Change it so that it just has one field which has all the information.
// ByteData indicates the key stores data.
ByteData = byte(0x00)
// ByteIndex indicates the key stores an index.
ByteIndex = byte(0x02)
// ByteReverse indicates the key stores a reverse index.
ByteReverse = byte(0x04)
// ByteCount indicates the key stores a count index.
ByteCount = byte(0x08)
// ByteCountRev indicates the key stores a reverse count index.
ByteCountRev = ByteCount | ByteReverse
// DefaultPrefix is the prefix used for data, index and reverse keys so that relative
// order of data doesn't change keys of same attributes are located together.
DefaultPrefix = byte(0x00)
ByteSchema = byte(0x01)
ByteType = byte(0x02)
// ByteSplit signals that the key stores an individual part of a multi-part list.
ByteSplit = byte(0x04)
// ByteUnused is a constant to specify keys which need to be discarded.
ByteUnused = byte(0xff)
)
func writeAttr(buf []byte, attr string) []byte {
AssertTrue(len(attr) < math.MaxUint16)
binary.BigEndian.PutUint16(buf[:2], uint16(len(attr)))
rest := buf[2:]
AssertTrue(len(attr) == copy(rest, attr))
return rest[len(attr):]
}
// genKey creates the key and writes the initial bytes (type byte, length of attribute,
// and the attribute itself). It leaves the rest of the key empty for further processing
// if necessary.
func generateKey(typeByte byte, attr string, totalLen int) []byte {
AssertTrue(totalLen >= 1+2+len(attr))
buf := make([]byte, totalLen)
buf[0] = typeByte
rest := buf[1:]
writeAttr(rest, attr)
return buf
}
// SchemaKey returns schema key for given attribute. Schema keys are stored
// separately with unique prefix, since we need to iterate over all schema keys.
// The structure of a schema key is as follows:
//
// byte 0: key type prefix (set to ByteSchema)
// byte 1-2: length of attr
// next len(attr) bytes: value of attr
func SchemaKey(attr string) []byte {
return generateKey(ByteSchema, attr, 1+2+len(attr))
}
// TypeKey returns type key for given type name. Type keys are stored separately
// with a unique prefix, since we need to iterate over all type keys.
// The structure of a type key is as follows:
//
// byte 0: key type prefix (set to ByteType)
// byte 1-2: length of typeName
// next len(attr) bytes: value of attr (the type name)
func TypeKey(attr string) []byte {
return generateKey(ByteType, attr, 1+2+len(attr))
}
// DataKey generates a data key with the given attribute and UID.
// The structure of a data key is as follows:
//
// byte 0: key type prefix (set to DefaultPrefix or ByteSplit if part of a multi-part list)
// byte 1-2: length of attr
// next len(attr) bytes: value of attr
// next byte: data type prefix (set to ByteData)
// next eight bytes: value of uid
// next eight bytes (optional): if the key corresponds to a split list, the startUid of
// the split stored in this key and the first byte will be sets to ByteSplit.
func DataKey(attr string, uid uint64) []byte {
prefixLen := 1 + 2 + len(attr)
totalLen := prefixLen + 1 + 8
buf := generateKey(DefaultPrefix, attr, totalLen)
rest := buf[prefixLen:]
rest[0] = ByteData
rest = rest[1:]
binary.BigEndian.PutUint64(rest, uid)
return buf
}
// ReverseKey generates a reverse key with the given attribute and UID.
// The structure of a reverse key is as follows:
//
// byte 0: key type prefix (set to DefaultPrefix or ByteSplit if part of a multi-part list)
// byte 1-2: length of attr
// next len(attr) bytes: value of attr
// next byte: data type prefix (set to ByteReverse)
// next eight bytes: value of uid
// next eight bytes (optional): if the key corresponds to a split list, the startUid of
// the split stored in this key.
func ReverseKey(attr string, uid uint64) []byte {
prefixLen := 1 + 2 + len(attr)
totalLen := prefixLen + 1 + 8
buf := generateKey(DefaultPrefix, attr, totalLen)
rest := buf[prefixLen:]
rest[0] = ByteReverse
rest = rest[1:]
binary.BigEndian.PutUint64(rest, uid)
return buf
}
// IndexKey generates a index key with the given attribute and term.
// The structure of an index key is as follows:
//
// byte 0: key type prefix (set to DefaultPrefix or ByteSplit if part of a multi-part list)
// byte 1-2: length of attr
// next len(attr) bytes: value of attr
// next byte: data type prefix (set to ByteIndex)
// next len(term) bytes: value of term
// next eight bytes (optional): if the key corresponds to a split list, the startUid of
// the split stored in this key.
func IndexKey(attr, term string) []byte {
prefixLen := 1 + 2 + len(attr)
totalLen := prefixLen + 1 + len(term)
buf := generateKey(DefaultPrefix, attr, totalLen)
rest := buf[prefixLen:]
rest[0] = ByteIndex
rest = rest[1:]
AssertTrue(len(term) == copy(rest, term))
return buf
}
// CountKey generates a count key with the given attribute and uid.
// The structure of a count key is as follows:
//
// byte 0: key type prefix (set to DefaultPrefix)
// byte 1-2: length of attr
// next len(attr) bytes: value of attr
// next byte: data type prefix (set to ByteCount or ByteCountRev)
// next four bytes: value of count.
func CountKey(attr string, count uint32, reverse bool) []byte {
prefixLen := 1 + 2 + len(attr)
totalLen := prefixLen + 1 + 4
buf := generateKey(DefaultPrefix, attr, totalLen)
rest := buf[prefixLen:]
if reverse {
rest[0] = ByteCountRev
} else {
rest[0] = ByteCount
}
rest = rest[1:]
binary.BigEndian.PutUint32(rest, count)
return buf
}
// ParsedKey represents a key that has been parsed into its multiple attributes.
type ParsedKey struct {
ByteType byte
Attr string
Uid uint64
HasStartUid bool
StartUid uint64
Term string
Count uint32
bytePrefix byte
}
// IsData returns whether the key is a data key.
func (p ParsedKey) IsData() bool {
return (p.bytePrefix == DefaultPrefix || p.bytePrefix == ByteSplit) && p.ByteType == ByteData
}
// IsReverse returns whether the key is a reverse key.
func (p ParsedKey) IsReverse() bool {
return (p.bytePrefix == DefaultPrefix || p.bytePrefix == ByteSplit) && p.ByteType == ByteReverse
}
// IsCountOrCountRev returns whether the key is a count or a count rev key.
func (p ParsedKey) IsCountOrCountRev() bool {
return p.IsCount() || p.IsCountRev()
}
// IsCount returns whether the key is a count key.
func (p ParsedKey) IsCount() bool {
return (p.bytePrefix == DefaultPrefix || p.bytePrefix == ByteSplit) && p.ByteType == ByteCount
}
// IsCountRev returns whether the key is a count rev key.
func (p ParsedKey) IsCountRev() bool {
return (p.bytePrefix == DefaultPrefix || p.bytePrefix == ByteSplit) && p.ByteType == ByteCountRev
}
// IsIndex returns whether the key is an index key.
func (p ParsedKey) IsIndex() bool {
return (p.bytePrefix == DefaultPrefix || p.bytePrefix == ByteSplit) && p.ByteType == ByteIndex
}
// IsSchema returns whether the key is a schema key.
func (p ParsedKey) IsSchema() bool {
return p.bytePrefix == ByteSchema
}
// IsType returns whether the key is a type key.
func (p ParsedKey) IsType() bool {
return p.bytePrefix == ByteType
}
// IsOfType checks whether the key is of the given type.
func (p ParsedKey) IsOfType(typ byte) bool {
switch typ {
case ByteCount, ByteCountRev:
return p.IsCountOrCountRev()
case ByteReverse:
return p.IsReverse()
case ByteIndex:
return p.IsIndex()
case ByteData:
return p.IsData()
default:
}
return false
}
// SkipPredicate returns the first key after the keys corresponding to the predicate
// of this key. Useful when iterating in the reverse order.
func (p ParsedKey) SkipPredicate() []byte {
buf := make([]byte, 1+2+len(p.Attr)+1)
buf[0] = p.bytePrefix
rest := buf[1:]
k := writeAttr(rest, p.Attr)
AssertTrue(len(k) == 1)
k[0] = 0xFF
return buf
}
// SkipSchema returns the first key after all the schema keys.
func (p ParsedKey) SkipSchema() []byte {
var buf [1]byte
buf[0] = ByteSchema + 1
return buf[:]
}
// SkipType returns the first key after all the type keys.
func (p ParsedKey) SkipType() []byte {
var buf [1]byte
buf[0] = ByteType + 1
return buf[:]
}
// DataPrefix returns the prefix for data keys.
func (p ParsedKey) DataPrefix() []byte {
buf := make([]byte, 1+2+len(p.Attr)+1)
buf[0] = p.bytePrefix
rest := buf[1:]
k := writeAttr(rest, p.Attr)
AssertTrue(len(k) == 1)
k[0] = ByteData
return buf
}
// IndexPrefix returns the prefix for index keys.
func (p ParsedKey) IndexPrefix() []byte {
buf := make([]byte, 1+2+len(p.Attr)+1)
buf[0] = DefaultPrefix
rest := buf[1:]
k := writeAttr(rest, p.Attr)
AssertTrue(len(k) == 1)
k[0] = ByteIndex
return buf
}
// ReversePrefix returns the prefix for index keys.
func (p ParsedKey) ReversePrefix() []byte {
buf := make([]byte, 1+2+len(p.Attr)+1)
buf[0] = DefaultPrefix
rest := buf[1:]
k := writeAttr(rest, p.Attr)
AssertTrue(len(k) == 1)
k[0] = ByteReverse
return buf
}
// CountPrefix returns the prefix for count keys.
func (p ParsedKey) CountPrefix(reverse bool) []byte {
buf := make([]byte, 1+2+len(p.Attr)+1)
buf[0] = p.bytePrefix
rest := buf[1:]
k := writeAttr(rest, p.Attr)
AssertTrue(len(k) == 1)
if reverse {
k[0] = ByteCountRev
} else {
k[0] = ByteCount
}
return buf
}
// ToBackupKey returns the key in the format used for writing backups.
func (p ParsedKey) ToBackupKey() *pb.BackupKey {
key := pb.BackupKey{}
key.Attr = p.Attr
key.Uid = p.Uid
key.StartUid = p.StartUid
key.Term = p.Term
key.Count = p.Count
switch {
case p.IsData():
key.Type = pb.BackupKey_DATA
case p.IsIndex():
key.Type = pb.BackupKey_INDEX
case p.IsReverse():
key.Type = pb.BackupKey_REVERSE
case p.IsCount():
key.Type = pb.BackupKey_COUNT
case p.IsCountRev():
key.Type = pb.BackupKey_COUNT_REV
case p.IsSchema():
key.Type = pb.BackupKey_SCHEMA
case p.IsType():
key.Type = pb.BackupKey_TYPE
}
return &key
}
// FromBackupKey takes a key in the format used for backups and converts it to a key.
func FromBackupKey(backupKey *pb.BackupKey) []byte {
if backupKey == nil {
return nil
}
var key []byte
switch backupKey.Type {
case pb.BackupKey_DATA:
key = DataKey(backupKey.Attr, backupKey.Uid)
case pb.BackupKey_INDEX:
key = IndexKey(backupKey.Attr, backupKey.Term)
case pb.BackupKey_REVERSE:
key = ReverseKey(backupKey.Attr, backupKey.Uid)
case pb.BackupKey_COUNT:
key = CountKey(backupKey.Attr, backupKey.Count, false)
case pb.BackupKey_COUNT_REV:
key = CountKey(backupKey.Attr, backupKey.Count, true)
case pb.BackupKey_SCHEMA:
key = SchemaKey(backupKey.Attr)
case pb.BackupKey_TYPE:
key = TypeKey(backupKey.Attr)
}
if backupKey.StartUid > 0 {
var err error
key, err = SplitKey(key, backupKey.StartUid)
Check(err)
}
return key
}
// SchemaPrefix returns the prefix for Schema keys.
func SchemaPrefix() []byte {
var buf [1]byte
buf[0] = ByteSchema
return buf[:]
}
// TypePrefix returns the prefix for Schema keys.
func TypePrefix() []byte {
var buf [1]byte
buf[0] = ByteType
return buf[:]
}
// PredicatePrefix returns the prefix for all keys belonging to this predicate except schema key.
func PredicatePrefix(predicate string) []byte {
buf := make([]byte, 1+2+len(predicate))
buf[0] = DefaultPrefix
k := writeAttr(buf[1:], predicate)
AssertTrue(len(k) == 0)
return buf
}
// SplitKey takes a key baseKey and generates the key of the list split that starts at startUid.
func SplitKey(baseKey []byte, startUid uint64) ([]byte, error) {
keyCopy := make([]byte, len(baseKey)+8)
copy(keyCopy, baseKey)
if keyCopy[0] != DefaultPrefix {
return nil, errors.Errorf("only keys with default prefix can have a split key")
}
// Change the first byte (i.e the key prefix) to ByteSplit to signal this is an
// individual part of a single list key.
keyCopy[0] = ByteSplit
// Append the start uid at the end of the key.
binary.BigEndian.PutUint64(keyCopy[len(baseKey):], startUid)
return keyCopy, nil
}
// Parse would parse the key. ParsedKey does not reuse the key slice, so the key slice can change
// without affecting the contents of ParsedKey.
func Parse(key []byte) (ParsedKey, error) {
var p ParsedKey
if len(key) == 0 {
return p, errors.New("0 length key")
}
p.bytePrefix = key[0]
if p.bytePrefix == ByteUnused {
return p, nil
}
p.HasStartUid = key[0] == ByteSplit
if len(key) < 3 {
return p, errors.Errorf("Invalid format for key %v", key)
}
sz := int(binary.BigEndian.Uint16(key[1:3]))
k := key[3:]
if len(k) < sz {
return p, errors.Errorf("Invalid size %v for key %v", sz, key)
}
p.Attr = string(k[:sz])
k = k[sz:]
switch p.bytePrefix {
case ByteSchema, ByteType:
return p, nil
default:
}
p.ByteType = k[0]
k = k[1:]
switch p.ByteType {
case ByteData, ByteReverse:
if len(k) < 8 {
return p, errors.Errorf("uid length < 8 for key: %q, parsed key: %+v", key, p)
}
p.Uid = binary.BigEndian.Uint64(k)
if p.Uid == 0 {
return p, errors.Errorf("Invalid UID with value 0 for key: %v", key)
}
if !p.HasStartUid {
break
}
if len(k) != 16 {
return p, errors.Errorf("StartUid length != 8 for key: %q, parsed key: %+v", key, p)
}
k = k[8:]
p.StartUid = binary.BigEndian.Uint64(k)
case ByteIndex:
if !p.HasStartUid {
p.Term = string(k)
break
}
if len(k) < 8 {
return p, errors.Errorf("StartUid length < 8 for key: %q, parsed key: %+v", key, p)
}
term := k[:len(k)-8]
startUid := k[len(k)-8:]
p.Term = string(term)
p.StartUid = binary.BigEndian.Uint64(startUid)
case ByteCount, ByteCountRev:
if len(k) < 4 {
return p, errors.Errorf("count length < 4 for key: %q, parsed key: %+v", key, p)
}
p.Count = binary.BigEndian.Uint32(k)
if !p.HasStartUid {
break
}
if len(k) != 12 {
return p, errors.Errorf("StartUid length != 8 for key: %q, parsed key: %+v", key, p)
}
k = k[4:]
p.StartUid = binary.BigEndian.Uint64(k)
default:
// Some other data type.
return p, errors.Errorf("Invalid data type")
}
return p, nil
}
// These predicates appear for queries that have * as predicate in them.
var starAllPredicateMap = map[string]struct{}{
"dgraph.type": {},
}
var aclPredicateMap = map[string]struct{}{
"dgraph.xid": {},
"dgraph.password": {},
"dgraph.user.group": {},
"dgraph.rule.predicate": {},
"dgraph.rule.permission": {},
"dgraph.acl.rule": {},
}
var graphqlReservedPredicate = map[string]struct{}{
"dgraph.graphql.xid": {},
"dgraph.graphql.schema": {},
"dgraph.cors": {},
"dgraph.graphql.schema_history": {},
"dgraph.graphql.schema_created_at": {},
}
// internalPredicateMap stores a set of Dgraph's internal predicate. An internal
// predicate is a predicate that has a special meaning in Dgraph and its query
// language and should not be allowed as a user-defined predicate.
var internalPredicateMap = map[string]struct{}{
"uid": {},
}
var preDefinedTypeMap = map[string]struct{}{
"dgraph.graphql": {},
"dgraph.type.User": {},
"dgraph.type.Group": {},
"dgraph.type.Rule": {},
"dgraph.graphql.history": {},
"dgraph.graphql.persisted_query": {},
}
// IsGraphqlReservedPredicate returns true if it is the predicate is reserved by graphql.
func IsGraphqlReservedPredicate(pred string) bool {
_, ok := graphqlReservedPredicate[pred]
return ok
}
// IsReservedPredicate returns true if the predicate is reserved for internal usage, i.e., prefixed
// with `dgraph.`.
//
// We reserve `dgraph.` as the namespace for the types/predicates we may create in future.
// So, users are not allowed to create a predicate under this namespace.
// Hence, we should always define internal predicates under `dgraph.` namespace.
//
// Reserved predicates are a superset of pre-defined predicates.
//
// When critical, use IsPreDefinedPredicate(pred string) to find out whether the predicate was
// actually defined internally or not.
//
// As an example, consider below predicates:
// 1. dgraph.type (reserved = true, pre_defined = true )
// 2. dgraph.blah (reserved = true, pre_defined = false)
// 3. person.name (reserved = false, pre_defined = false)
func IsReservedPredicate(pred string) bool {
return isReservedName(pred)
}
// IsPreDefinedPredicate returns true only if the predicate has been defined by dgraph internally.
// For example, `dgraph.type` or ACL predicates or GraphQL predicates are defined in the initial
// internal schema.
//
// We reserve `dgraph.` as the namespace for the types/predicates we may create in future.
// So, users are not allowed to create a predicate under this namespace.
// Hence, we should always define internal predicates under `dgraph.` namespace.
//
// Pre-defined predicates are subset of reserved predicates.
func IsPreDefinedPredicate(pred string) bool {
_, ok := starAllPredicateMap[strings.ToLower(pred)]
return ok || IsAclPredicate(pred) || IsGraphqlReservedPredicate(pred)
}
// IsAclPredicate returns true if the predicate is in the list of reserved
// predicates for the ACL feature.
func IsAclPredicate(pred string) bool {
_, ok := aclPredicateMap[strings.ToLower(pred)]
return ok
}
// StarAllPredicates returns the complete list of pre-defined predicates that needs to
// be expanded when * is given as a predicate.
func StarAllPredicates() []string {
preds := make([]string, 0, len(starAllPredicateMap))
for pred := range starAllPredicateMap {
preds = append(preds, pred)
}
return preds
}
func AllACLPredicates() []string {
preds := make([]string, 0, len(aclPredicateMap))
for pred := range aclPredicateMap {
preds = append(preds, pred)
}
return preds
}
// IsInternalPredicate returns true if the predicate is in the internal predicate list.
// Currently, `uid` is the only such candidate.
func IsInternalPredicate(pred string) bool {
_, ok := internalPredicateMap[strings.ToLower(pred)]
return ok
}
// IsReservedType returns true if the given typ is reserved for internal usage, i.e.,
// prefixed with `dgraph.`.
//
// We reserve `dgraph.` as the namespace for the types/predicates we may create in future.
// So, users are not allowed to create a type under this namespace.
// Hence, we should always define internal types under `dgraph.` namespace.
//
// Pre-defined types are subset of reserved types.
//
// When critical, use IsPreDefinedType(typ string) to find out whether the typ was
// actually defined internally or not.
func IsReservedType(typ string) bool {
return isReservedName(typ)
}
// IsPreDefinedType returns true only if the typ has been defined by dgraph internally.
// For example, `dgraph.graphql` or ACL types are defined in the initial internal types.
//
// We reserve `dgraph.` as the namespace for the types/predicates we may create in future.
// So, users are not allowed to create a predicate under this namespace.
// Hence, we should always define internal types under `dgraph.` namespace.
//
// Pre-defined types are subset of reserved types.
func IsPreDefinedType(typ string) bool {
_, ok := preDefinedTypeMap[typ]
return ok
}
// isReservedName returns true if the given name is prefixed with `dgraph.`
func isReservedName(name string) bool {
return strings.HasPrefix(strings.ToLower(name), "dgraph.")
}