-
Notifications
You must be signed in to change notification settings - Fork 1.2k
/
value.go
1899 lines (1732 loc) · 53.9 KB
/
value.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* Copyright 2017 Dgraph Labs, Inc. and Contributors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package badger
import (
"bufio"
"bytes"
"crypto/aes"
cryptorand "crypto/rand"
"encoding/binary"
"encoding/json"
"fmt"
"hash"
"hash/crc32"
"io"
"io/ioutil"
"math"
"math/rand"
"os"
"sort"
"strconv"
"strings"
"sync"
"sync/atomic"
"time"
"github.com/dgraph-io/badger/v2/options"
"github.com/dgraph-io/badger/v2/pb"
"github.com/dgraph-io/badger/v2/y"
"github.com/pkg/errors"
"golang.org/x/net/trace"
)
// Values have their first byte being byteData or byteDelete. This helps us distinguish between
// a key that has never been seen and a key that has been explicitly deleted.
const (
bitDelete byte = 1 << 0 // Set if the key has been deleted.
bitValuePointer byte = 1 << 1 // Set if the value is NOT stored directly next to key.
bitDiscardEarlierVersions byte = 1 << 2 // Set if earlier versions can be discarded.
// Set if item shouldn't be discarded via compactions (used by merge operator)
bitMergeEntry byte = 1 << 3
// The MSB 2 bits are for transactions.
bitTxn byte = 1 << 6 // Set if the entry is part of a txn.
bitFinTxn byte = 1 << 7 // Set if the entry is to indicate end of txn in value log.
mi int64 = 1 << 20
// The number of updates after which discard map should be flushed into badger.
discardStatsFlushThreshold = 100
// size of vlog header.
// +----------------+------------------+
// | keyID(8 bytes) | baseIV(12 bytes)|
// +----------------+------------------+
vlogHeaderSize = 20
)
type logFile struct {
path string
// This is a lock on the log file. It guards the fd’s value, the file’s
// existence and the file’s memory map.
//
// Use shared ownership when reading/writing the file or memory map, use
// exclusive ownership to open/close the descriptor, unmap or remove the file.
lock sync.RWMutex
fd *os.File
fid uint32
fmap []byte
size uint32
loadingMode options.FileLoadingMode
dataKey *pb.DataKey
baseIV []byte
registry *KeyRegistry
}
// encodeEntry will encode entry to the buf
// layout of entry
// +--------+-----+-------+-------+
// | header | key | value | crc32 |
// +--------+-----+-------+-------+
func (lf *logFile) encodeEntry(e *Entry, buf *bytes.Buffer, offset uint32) (int, error) {
h := header{
klen: uint32(len(e.Key)),
vlen: uint32(len(e.Value)),
expiresAt: e.ExpiresAt,
meta: e.meta,
userMeta: e.UserMeta,
}
// encode header.
var headerEnc [maxHeaderSize]byte
sz := h.Encode(headerEnc[:])
y.Check2(buf.Write(headerEnc[:sz]))
// write hash.
hash := crc32.New(y.CastagnoliCrcTable)
y.Check2(hash.Write(headerEnc[:sz]))
// we'll encrypt only key and value.
if lf.encryptionEnabled() {
// TODO: no need to allocate the bytes. we can calculate the encrypted buf one by one
// since we're using ctr mode of AES encryption. Ordering won't changed. Need some
// refactoring in XORBlock which will work like stream cipher.
eBuf := make([]byte, 0, len(e.Key)+len(e.Value))
eBuf = append(eBuf, e.Key...)
eBuf = append(eBuf, e.Value...)
var err error
eBuf, err = y.XORBlock(eBuf, lf.dataKey.Data, lf.generateIV(offset))
if err != nil {
return 0, y.Wrapf(err, "Error while encoding entry for vlog.")
}
// write encrypted buf.
y.Check2(buf.Write(eBuf))
// write the hash.
y.Check2(hash.Write(eBuf))
} else {
// Encryption is disabled so writing directly to the buffer.
// write key.
y.Check2(buf.Write(e.Key))
// write key hash.
y.Check2(hash.Write(e.Key))
// write value.
y.Check2(buf.Write(e.Value))
// write value hash.
y.Check2(hash.Write(e.Value))
}
// write crc32 hash.
var crcBuf [crc32.Size]byte
binary.BigEndian.PutUint32(crcBuf[:], hash.Sum32())
y.Check2(buf.Write(crcBuf[:]))
// return encoded length.
return len(headerEnc[:sz]) + len(e.Key) + len(e.Value) + len(crcBuf), nil
}
func (lf *logFile) decodeEntry(buf []byte, offset uint32) (*Entry, error) {
var h header
hlen := h.Decode(buf)
kv := buf[hlen:]
if lf.encryptionEnabled() {
var err error
// No need to worry about mmap. because, XORBlock allocates a byte array to do the
// xor. So, the given slice is not being mutated.
if kv, err = lf.decryptKV(kv, offset); err != nil {
return nil, err
}
}
e := &Entry{
meta: h.meta,
UserMeta: h.userMeta,
ExpiresAt: h.expiresAt,
offset: offset,
Key: kv[:h.klen],
Value: kv[h.klen : h.klen+h.vlen],
}
return e, nil
}
func (lf *logFile) decryptKV(buf []byte, offset uint32) ([]byte, error) {
return y.XORBlock(buf, lf.dataKey.Data, lf.generateIV(offset))
}
// KeyID returns datakey's ID.
func (lf *logFile) keyID() uint64 {
if lf.dataKey == nil {
// If there is no datakey, then we'll return 0. Which means no encryption.
return 0
}
return lf.dataKey.KeyId
}
func (lf *logFile) mmap(size int64) (err error) {
if lf.loadingMode != options.MemoryMap {
// Nothing to do
return nil
}
lf.fmap, err = y.Mmap(lf.fd, false, size)
if err == nil {
err = y.Madvise(lf.fmap, false) // Disable readahead
}
return err
}
func (lf *logFile) encryptionEnabled() bool {
return lf.dataKey != nil
}
func (lf *logFile) munmap() (err error) {
if lf.loadingMode != options.MemoryMap || len(lf.fmap) == 0 {
// Nothing to do
return nil
}
if err := y.Munmap(lf.fmap); err != nil {
return errors.Wrapf(err, "Unable to munmap value log: %q", lf.path)
}
// This is important. We should set the map to nil because ummap
// system call doesn't change the length or capacity of the fmap slice.
lf.fmap = nil
return nil
}
// Acquire lock on mmap/file if you are calling this
func (lf *logFile) read(p valuePointer, s *y.Slice) (buf []byte, err error) {
var nbr int64
offset := p.Offset
if lf.loadingMode == options.FileIO {
buf = s.Resize(int(p.Len))
var n int
n, err = lf.fd.ReadAt(buf, int64(offset))
nbr = int64(n)
} else {
// Do not convert size to uint32, because the lf.fmap can be of size
// 4GB, which overflows the uint32 during conversion to make the size 0,
// causing the read to fail with ErrEOF. See issue #585.
size := int64(len(lf.fmap))
valsz := p.Len
lfsz := atomic.LoadUint32(&lf.size)
if int64(offset) >= size || int64(offset+valsz) > size ||
// Ensure that the read is within the file's actual size. It might be possible that
// the offset+valsz length is beyond the file's actual size. This could happen when
// dropAll and iterations are running simultaneously.
int64(offset+valsz) > int64(lfsz) {
err = y.ErrEOF
} else {
buf = lf.fmap[offset : offset+valsz]
nbr = int64(valsz)
}
}
y.NumReads.Add(1)
y.NumBytesRead.Add(nbr)
return buf, err
}
// generateIV will generate IV by appending given offset with the base IV.
func (lf *logFile) generateIV(offset uint32) []byte {
iv := make([]byte, aes.BlockSize)
// baseIV is of 12 bytes.
y.AssertTrue(12 == copy(iv[:12], lf.baseIV))
// remaining 4 bytes is obtained from offset.
binary.BigEndian.PutUint32(iv[12:], offset)
return iv
}
func (lf *logFile) doneWriting(offset uint32) error {
// Sync before acquiring lock. (We call this from write() and thus know we have shared access
// to the fd.)
if err := y.FileSync(lf.fd); err != nil {
return errors.Wrapf(err, "Unable to sync value log: %q", lf.path)
}
// Before we were acquiring a lock here on lf.lock, because we were invalidating the file
// descriptor due to reopening it as read-only. Now, we don't invalidate the fd, but unmap it,
// truncate it and remap it. That creates a window where we have segfaults because the mmap is
// no longer valid, while someone might be reading it. Therefore, we need a lock here again.
lf.lock.Lock()
defer lf.lock.Unlock()
// Unmap file before we truncate it. Windows cannot truncate a file that is mmapped.
if err := lf.munmap(); err != nil {
return errors.Wrapf(err, "failed to munmap vlog file %s", lf.fd.Name())
}
// TODO: Confirm if we need to run a file sync after truncation.
// Truncation must run after unmapping, otherwise Windows would crap itself.
if err := lf.fd.Truncate(int64(offset)); err != nil {
return errors.Wrapf(err, "Unable to truncate file: %q", lf.path)
}
// Reinitialize the log file. This will mmap the entire file.
if err := lf.init(); err != nil {
return errors.Wrapf(err, "failed to initialize file %s", lf.fd.Name())
}
// Previously we used to close the file after it was written and reopen it in read-only mode.
// We no longer open files in read-only mode. We keep all vlog files open in read-write mode.
return nil
}
// You must hold lf.lock to sync()
func (lf *logFile) sync() error {
return y.FileSync(lf.fd)
}
var errStop = errors.New("Stop iteration")
var errTruncate = errors.New("Do truncate")
var errDeleteVlogFile = errors.New("Delete vlog file")
type logEntry func(e Entry, vp valuePointer) error
type safeRead struct {
k []byte
v []byte
recordOffset uint32
lf *logFile
}
// hashReader implements io.Reader, io.ByteReader interfaces. It also keeps track of the number
// bytes read. The hashReader writes to h (hash) what it reads from r.
type hashReader struct {
r io.Reader
h hash.Hash32
bytesRead int // Number of bytes read.
}
func newHashReader(r io.Reader) *hashReader {
hash := crc32.New(y.CastagnoliCrcTable)
return &hashReader{
r: r,
h: hash,
}
}
// Read reads len(p) bytes from the reader. Returns the number of bytes read, error on failure.
func (t *hashReader) Read(p []byte) (int, error) {
n, err := t.r.Read(p)
if err != nil {
return n, err
}
t.bytesRead += n
return t.h.Write(p[:n])
}
// ReadByte reads exactly one byte from the reader. Returns error on failure.
func (t *hashReader) ReadByte() (byte, error) {
b := make([]byte, 1)
_, err := t.Read(b)
return b[0], err
}
// Sum32 returns the sum32 of the underlying hash.
func (t *hashReader) Sum32() uint32 {
return t.h.Sum32()
}
// Entry reads an entry from the provided reader. It also validates the checksum for every entry
// read. Returns error on failure.
func (r *safeRead) Entry(reader io.Reader) (*Entry, error) {
tee := newHashReader(reader)
var h header
hlen, err := h.DecodeFrom(tee)
if err != nil {
return nil, err
}
if h.klen > uint32(1<<16) { // Key length must be below uint16.
return nil, errTruncate
}
kl := int(h.klen)
if cap(r.k) < kl {
r.k = make([]byte, 2*kl)
}
vl := int(h.vlen)
if cap(r.v) < vl {
r.v = make([]byte, 2*vl)
}
e := &Entry{}
e.offset = r.recordOffset
e.hlen = hlen
buf := make([]byte, h.klen+h.vlen)
if _, err := io.ReadFull(tee, buf[:]); err != nil {
if err == io.EOF {
err = errTruncate
}
return nil, err
}
if r.lf.encryptionEnabled() {
if buf, err = r.lf.decryptKV(buf[:], r.recordOffset); err != nil {
return nil, err
}
}
e.Key = buf[:h.klen]
e.Value = buf[h.klen:]
var crcBuf [crc32.Size]byte
if _, err := io.ReadFull(reader, crcBuf[:]); err != nil {
if err == io.EOF {
err = errTruncate
}
return nil, err
}
crc := y.BytesToU32(crcBuf[:])
if crc != tee.Sum32() {
return nil, errTruncate
}
e.meta = h.meta
e.UserMeta = h.userMeta
e.ExpiresAt = h.expiresAt
return e, nil
}
// iterate iterates over log file. It doesn't not allocate new memory for every kv pair.
// Therefore, the kv pair is only valid for the duration of fn call.
func (vlog *valueLog) iterate(lf *logFile, offset uint32, fn logEntry) (uint32, error) {
fi, err := lf.fd.Stat()
if err != nil {
return 0, err
}
if offset == 0 {
// If offset is set to zero, let's advance past the encryption key header.
offset = vlogHeaderSize
}
if int64(offset) == fi.Size() {
// We're at the end of the file already. No need to do anything.
return offset, nil
}
if vlog.opt.ReadOnly {
// We're not at the end of the file. We'd need to replay the entries, or
// possibly truncate the file.
return 0, ErrReplayNeeded
}
// We're not at the end of the file. Let's Seek to the offset and start reading.
if _, err := lf.fd.Seek(int64(offset), io.SeekStart); err != nil {
return 0, errFile(err, lf.path, "Unable to seek")
}
reader := bufio.NewReader(lf.fd)
read := &safeRead{
k: make([]byte, 10),
v: make([]byte, 10),
recordOffset: offset,
lf: lf,
}
var lastCommit uint64
var validEndOffset uint32 = offset
for {
e, err := read.Entry(reader)
if err == io.EOF {
break
} else if err == io.ErrUnexpectedEOF || err == errTruncate {
break
} else if err != nil {
return 0, err
} else if e == nil {
continue
}
var vp valuePointer
vp.Len = uint32(int(e.hlen) + len(e.Key) + len(e.Value) + crc32.Size)
read.recordOffset += vp.Len
vp.Offset = e.offset
vp.Fid = lf.fid
if e.meta&bitTxn > 0 {
txnTs := y.ParseTs(e.Key)
if lastCommit == 0 {
lastCommit = txnTs
}
if lastCommit != txnTs {
break
}
} else if e.meta&bitFinTxn > 0 {
txnTs, err := strconv.ParseUint(string(e.Value), 10, 64)
if err != nil || lastCommit != txnTs {
break
}
// Got the end of txn. Now we can store them.
lastCommit = 0
validEndOffset = read.recordOffset
} else {
if lastCommit != 0 {
// This is most likely an entry which was moved as part of GC.
// We shouldn't get this entry in the middle of a transaction.
break
}
validEndOffset = read.recordOffset
}
if err := fn(*e, vp); err != nil {
if err == errStop {
break
}
return 0, errFile(err, lf.path, "Iteration function")
}
}
return validEndOffset, nil
}
func (vlog *valueLog) rewrite(f *logFile, tr trace.Trace) error {
maxFid := atomic.LoadUint32(&vlog.maxFid)
y.AssertTruef(uint32(f.fid) < maxFid, "fid to move: %d. Current max fid: %d", f.fid, maxFid)
tr.LazyPrintf("Rewriting fid: %d", f.fid)
wb := make([]*Entry, 0, 1000)
var size int64
y.AssertTrue(vlog.db != nil)
var count, moved int
fe := func(e Entry) error {
count++
if count%100000 == 0 {
tr.LazyPrintf("Processing entry %d", count)
}
vs, err := vlog.db.get(e.Key)
if err != nil {
return err
}
if discardEntry(e, vs) {
return nil
}
// Value is still present in value log.
if len(vs.Value) == 0 {
return errors.Errorf("Empty value: %+v", vs)
}
var vp valuePointer
vp.Decode(vs.Value)
// If the entry found from the LSM Tree points to a newer vlog file, don't do anything.
if vp.Fid > f.fid {
return nil
}
// If the entry found from the LSM Tree points to an offset greater than the one
// read from vlog, don't do anything.
if vp.Offset > e.offset {
return nil
}
// If the entry read from LSM Tree and vlog file point to the same vlog file and offset,
// insert them back into the DB.
// NOTE: It might be possible that the entry read from the LSM Tree points to
// an older vlog file. See the comments in the else part.
if vp.Fid == f.fid && vp.Offset == e.offset {
moved++
// This new entry only contains the key, and a pointer to the value.
ne := new(Entry)
ne.meta = 0 // Remove all bits. Different keyspace doesn't need these bits.
ne.UserMeta = e.UserMeta
ne.ExpiresAt = e.ExpiresAt
// Create a new key in a separate keyspace, prefixed by moveKey. We are not
// allowed to rewrite an older version of key in the LSM tree, because then this older
// version would be at the top of the LSM tree. To work correctly, reads expect the
// latest versions to be at the top, and the older versions at the bottom.
if bytes.HasPrefix(e.Key, badgerMove) {
ne.Key = append([]byte{}, e.Key...)
} else {
ne.Key = make([]byte, len(badgerMove)+len(e.Key))
n := copy(ne.Key, badgerMove)
copy(ne.Key[n:], e.Key)
}
ne.Value = append([]byte{}, e.Value...)
es := int64(ne.estimateSize(vlog.opt.ValueThreshold))
// Ensure length and size of wb is within transaction limits.
if int64(len(wb)+1) >= vlog.opt.maxBatchCount ||
size+es >= vlog.opt.maxBatchSize {
tr.LazyPrintf("request has %d entries, size %d", len(wb), size)
if err := vlog.db.batchSet(wb); err != nil {
return err
}
size = 0
wb = wb[:0]
}
wb = append(wb, ne)
size += es
} else {
// It might be possible that the entry read from LSM Tree points to an older vlog file.
// This can happen in the following situation. Assume DB is opened with
// numberOfVersionsToKeep=1
// Now, if we have 3 tables in L0, let's call them tab1, tab2, tab3. (tab3 is the latest
// table). tab1 has moveKey1 (points to vlog file 10), tab2 has moveKey2 (points to
// vlog file 14) and tab3 has moveKey3 (points to vlog file 15). All these 3
// versions were inserted because the same key "key" was updated three times (which
// means three different versions and three different move keys).
// Also, assume there is another move key "moveKey1" (points to vlog file 6) on lower
// levels (let's say 4). The move key "moveKey1" on level 0 was inserted
// because vlog file 6 was GCed.
//
// Here's what the arrangement looks like
// L0 => tab1 (moveKey1 => vlog10), tab2 (moveKey2 => vlog14), tab3 (moveKey3 => vlog15)
// L1 => ....
// L2 => ....
// L3 => tabx (moveKey1 => vlog6)
//
// When L0 compaction runs, it keeps only moveKey3 because the number of versions
// to keep is set to 1.
// The new arrangement of tables is
// L0 => ....
// L1 => tab4 (moveKey3 => vlog15)
// L2 => ....
// L3 => tabx (moveKey1 => vlog6)
//
// Now if we try to GC vlog file 10, the entry read from vlog file will point to vlog10
// but the entry read from LSM Tree will point to vlog6. This might seem like an issue
// but it's not really an issue because the user has set the number of versions to
// keep to 1 and the latest version of moveKey points to the correct vlog file and
// offset. The stale move key on L3 will be eventually dropped by compaction because
// there is a newer versions in the upper levels.
}
return nil
}
_, err := vlog.iterate(f, 0, func(e Entry, vp valuePointer) error {
return fe(e)
})
if err != nil {
return err
}
tr.LazyPrintf("request has %d entries, size %d", len(wb), size)
batchSize := 1024
var loops int
for i := 0; i < len(wb); {
loops++
if batchSize == 0 {
vlog.db.opt.Warningf("We shouldn't reach batch size of zero.")
return ErrNoRewrite
}
end := i + batchSize
if end > len(wb) {
end = len(wb)
}
if err := vlog.db.batchSet(wb[i:end]); err != nil {
if err == ErrTxnTooBig {
// Decrease the batch size to half.
batchSize = batchSize / 2
tr.LazyPrintf("Dropped batch size to %d", batchSize)
continue
}
return err
}
i += batchSize
}
tr.LazyPrintf("Processed %d entries in %d loops", len(wb), loops)
tr.LazyPrintf("Total entries: %d. Moved: %d", count, moved)
tr.LazyPrintf("Removing fid: %d", f.fid)
var deleteFileNow bool
// Entries written to LSM. Remove the older file now.
{
vlog.filesLock.Lock()
// Just a sanity-check.
if _, ok := vlog.filesMap[f.fid]; !ok {
vlog.filesLock.Unlock()
return errors.Errorf("Unable to find fid: %d", f.fid)
}
if vlog.iteratorCount() == 0 {
delete(vlog.filesMap, f.fid)
deleteFileNow = true
} else {
vlog.filesToBeDeleted = append(vlog.filesToBeDeleted, f.fid)
}
vlog.filesLock.Unlock()
}
if deleteFileNow {
if err := vlog.deleteLogFile(f); err != nil {
return err
}
}
return nil
}
func (vlog *valueLog) deleteMoveKeysFor(fid uint32, tr trace.Trace) error {
db := vlog.db
var result []*Entry
var count, pointers uint64
tr.LazyPrintf("Iterating over move keys to find invalids for fid: %d", fid)
err := db.View(func(txn *Txn) error {
opt := DefaultIteratorOptions
opt.InternalAccess = true
opt.PrefetchValues = false
itr := txn.NewIterator(opt)
defer itr.Close()
for itr.Seek(badgerMove); itr.ValidForPrefix(badgerMove); itr.Next() {
count++
item := itr.Item()
if item.meta&bitValuePointer == 0 {
continue
}
pointers++
var vp valuePointer
vp.Decode(item.vptr)
if vp.Fid == fid {
e := &Entry{Key: y.KeyWithTs(item.Key(), item.Version()), meta: bitDelete}
result = append(result, e)
}
}
return nil
})
if err != nil {
tr.LazyPrintf("Got error while iterating move keys: %v", err)
tr.SetError()
return err
}
tr.LazyPrintf("Num total move keys: %d. Num pointers: %d", count, pointers)
tr.LazyPrintf("Number of invalid move keys found: %d", len(result))
batchSize := 10240
for i := 0; i < len(result); {
end := i + batchSize
if end > len(result) {
end = len(result)
}
if err := db.batchSet(result[i:end]); err != nil {
if err == ErrTxnTooBig {
batchSize /= 2
tr.LazyPrintf("Dropped batch size to %d", batchSize)
continue
}
tr.LazyPrintf("Error while doing batchSet: %v", err)
tr.SetError()
return err
}
i += batchSize
}
tr.LazyPrintf("Move keys deletion done.")
return nil
}
func (vlog *valueLog) incrIteratorCount() {
atomic.AddInt32(&vlog.numActiveIterators, 1)
}
func (vlog *valueLog) iteratorCount() int {
return int(atomic.LoadInt32(&vlog.numActiveIterators))
}
func (vlog *valueLog) decrIteratorCount() error {
num := atomic.AddInt32(&vlog.numActiveIterators, -1)
if num != 0 {
return nil
}
vlog.filesLock.Lock()
lfs := make([]*logFile, 0, len(vlog.filesToBeDeleted))
for _, id := range vlog.filesToBeDeleted {
lfs = append(lfs, vlog.filesMap[id])
delete(vlog.filesMap, id)
}
vlog.filesToBeDeleted = nil
vlog.filesLock.Unlock()
for _, lf := range lfs {
if err := vlog.deleteLogFile(lf); err != nil {
return err
}
}
return nil
}
func (vlog *valueLog) deleteLogFile(lf *logFile) error {
if lf == nil {
return nil
}
lf.lock.Lock()
defer lf.lock.Unlock()
path := vlog.fpath(lf.fid)
if err := lf.munmap(); err != nil {
_ = lf.fd.Close()
return err
}
lf.fmap = nil
if err := lf.fd.Close(); err != nil {
return err
}
return os.Remove(path)
}
func (vlog *valueLog) dropAll() (int, error) {
// If db is opened in InMemory mode, we don't need to do anything since there are no vlog files.
if vlog.db.opt.InMemory {
return 0, nil
}
// We don't want to block dropAll on any pending transactions. So, don't worry about iterator
// count.
var count int
deleteAll := func() error {
vlog.filesLock.Lock()
defer vlog.filesLock.Unlock()
for _, lf := range vlog.filesMap {
if err := vlog.deleteLogFile(lf); err != nil {
return err
}
count++
}
vlog.filesMap = make(map[uint32]*logFile)
return nil
}
if err := deleteAll(); err != nil {
return count, err
}
vlog.db.opt.Infof("Value logs deleted. Creating value log file: 0")
if _, err := vlog.createVlogFile(0); err != nil {
return count, err
}
atomic.StoreUint32(&vlog.maxFid, 0)
return count, nil
}
// lfDiscardStats keeps track of the amount of data that could be discarded for
// a given logfile.
type lfDiscardStats struct {
sync.RWMutex
m map[uint32]int64
flushChan chan map[uint32]int64
closer *y.Closer
updatesSinceFlush int
}
type valueLog struct {
dirPath string
elog trace.EventLog
// guards our view of which files exist, which to be deleted, how many active iterators
filesLock sync.RWMutex
filesMap map[uint32]*logFile
filesToBeDeleted []uint32
// A refcount of iterators -- when this hits zero, we can delete the filesToBeDeleted.
numActiveIterators int32
db *DB
maxFid uint32 // accessed via atomics.
writableLogOffset uint32 // read by read, written by write. Must access via atomics.
numEntriesWritten uint32
opt Options
garbageCh chan struct{}
lfDiscardStats *lfDiscardStats
}
func vlogFilePath(dirPath string, fid uint32) string {
return fmt.Sprintf("%s%s%06d.vlog", dirPath, string(os.PathSeparator), fid)
}
func (vlog *valueLog) fpath(fid uint32) string {
return vlogFilePath(vlog.dirPath, fid)
}
func (vlog *valueLog) populateFilesMap() error {
vlog.filesMap = make(map[uint32]*logFile)
files, err := ioutil.ReadDir(vlog.dirPath)
if err != nil {
return errFile(err, vlog.dirPath, "Unable to open log dir.")
}
found := make(map[uint64]struct{})
for _, file := range files {
if !strings.HasSuffix(file.Name(), ".vlog") {
continue
}
fsz := len(file.Name())
fid, err := strconv.ParseUint(file.Name()[:fsz-5], 10, 32)
if err != nil {
return errFile(err, file.Name(), "Unable to parse log id.")
}
if _, ok := found[fid]; ok {
return errFile(err, file.Name(), "Duplicate file found. Please delete one.")
}
found[fid] = struct{}{}
lf := &logFile{
fid: uint32(fid),
path: vlog.fpath(uint32(fid)),
loadingMode: vlog.opt.ValueLogLoadingMode,
registry: vlog.db.registry,
}
vlog.filesMap[uint32(fid)] = lf
if vlog.maxFid < uint32(fid) {
vlog.maxFid = uint32(fid)
}
}
return nil
}
func (lf *logFile) open(path string, flags uint32) error {
var err error
if lf.fd, err = y.OpenExistingFile(path, flags); err != nil {
return y.Wrapf(err, "Error while opening file in logfile %s", path)
}
fi, err := lf.fd.Stat()
if err != nil {
return errFile(err, lf.path, "Unable to run file.Stat")
}
sz := fi.Size()
y.AssertTruef(
sz <= math.MaxUint32,
"file size: %d greater than %d",
uint32(sz), uint32(math.MaxUint32),
)
lf.size = uint32(sz)
if sz < vlogHeaderSize {
// Every vlog file should have at least vlogHeaderSize. If it is less than vlogHeaderSize
// then it must have been corrupted. But no need to handle here. log replayer will truncate
// and bootstrap the logfile. So ignoring here.
return nil
}
buf := make([]byte, vlogHeaderSize)
if _, err = lf.fd.Read(buf); err != nil {
return y.Wrapf(err, "Error while reading vlog file %d", lf.fid)
}
keyID := binary.BigEndian.Uint64(buf[:8])
var dk *pb.DataKey
// retrieve datakey.
if dk, err = lf.registry.dataKey(keyID); err != nil {
return y.Wrapf(err, "While opening vlog file %d", lf.fid)
}
lf.dataKey = dk
lf.baseIV = buf[8:]
y.AssertTrue(len(lf.baseIV) == 12)
return nil
}
// bootstrap will initialize the log file with key id and baseIV.
// The below figure shows the layout of log file.
// +----------------+------------------+------------------+
// | keyID(8 bytes) | baseIV(12 bytes)| entry... |
// +----------------+------------------+------------------+
func (lf *logFile) bootstrap() error {
var err error
// delete all the data. because bootstrap is been called while creating vlog and as well
// as replaying log. While replaying log, there may be any data left. So we need to truncate
// everything.
if err = lf.fd.Truncate(0); err != nil {
return y.Wrapf(err, "Error while bootstraping.")
}
if _, err = lf.fd.Seek(0, io.SeekStart); err != nil {
return y.Wrapf(err, "Error while SeekStart for the logfile %d in logFile.bootstarp", lf.fid)
}
// generate data key for the log file.
var dk *pb.DataKey
if dk, err = lf.registry.latestDataKey(); err != nil {
return y.Wrapf(err, "Error while retrieving datakey in logFile.bootstarp")
}
lf.dataKey = dk
// We'll always preserve vlogHeaderSize for key id and baseIV.
buf := make([]byte, vlogHeaderSize)
// write key id to the buf.
// key id will be zero if the logfile is in plain text.
binary.BigEndian.PutUint64(buf[:8], lf.keyID())
// generate base IV. It'll be used with offset of the vptr to encrypt the entry.
if _, err := cryptorand.Read(buf[8:]); err != nil {
return y.Wrapf(err, "Error while creating base IV, while creating logfile")
}
// Initialize base IV.
lf.baseIV = buf[8:]
y.AssertTrue(len(lf.baseIV) == 12)
// write the key id and base IV to the file.
_, err = lf.fd.Write(buf)
return err
}
func (vlog *valueLog) createVlogFile(fid uint32) (*logFile, error) {
path := vlog.fpath(fid)
lf := &logFile{
fid: fid,
path: path,
loadingMode: vlog.opt.ValueLogLoadingMode,
registry: vlog.db.registry,
}
// writableLogOffset is only written by write func, by read by Read func.
// To avoid a race condition, all reads and updates to this variable must be
// done via atomics.
var err error
if lf.fd, err = y.CreateSyncedFile(path, vlog.opt.SyncWrites); err != nil {
return nil, errFile(err, lf.path, "Create value log file")
}
if err = lf.bootstrap(); err != nil {
return nil, err
}
if err = syncDir(vlog.dirPath); err != nil {
return nil, errFile(err, vlog.dirPath, "Sync value log dir")
}
if err = lf.mmap(2 * vlog.opt.ValueLogFileSize); err != nil {
return nil, errFile(err, lf.path, "Mmap value log file")
}
// writableLogOffset is only written by write func, by read by Read func.
// To avoid a race condition, all reads and updates to this variable must be
// done via atomics.
atomic.StoreUint32(&vlog.writableLogOffset, vlogHeaderSize)
vlog.numEntriesWritten = 0
vlog.filesLock.Lock()
vlog.filesMap[fid] = lf
vlog.filesLock.Unlock()